声明:
这篇博客的某些题目和答案成果源自于July和何海涛的博客,网址:点击打开链接 点击打开链接
本人只是针对自己情况,把感兴趣的题目都罗列出来;针对其他的题目(不是来自上面两位),写出了自己的算法,仅供自己慢慢学习和品味。如有问题,请在博客下面留言。
1 题目:输入一棵二元树的根结点,求该树的深度。从根结点到叶结点依次经过的结点(含根、叶结点)形成树的一条路径,最长路径的长度为树的深度。
例如:输入二元树:
10
/ \
6 14
/ / \
4 12 16
输出该树的深度3。
二元树的结点定义如下:
struct SBinaryTreeNode // a node of the binary tree
{
int m_nValue; // value of node
SBinaryTreeNode *m_pLeft; // left child of node
SBinaryTreeNode *m_pRight; // right child of node
};
分析:这道题本质上还是考查二元树的遍历。
题目给出了一种树的深度的定义。当然,我们可以按照这种定义去得到树的所有路径,也就能得到最长路径以及它的长度。只是这种思路用来写程序有点麻烦。
我们还可以从另外一个角度来理解树的深度。如果一棵树只有一个结点,它的深度为1。如果根结点只有左子树而没有右子树,那么树的深度应该是其左子树的深度加1;同样如果根结点只有右子树而没有左子树,那么树的深度应该是其右子树的深度加1。如果既有右子树又有左子树呢?那该树的深度就是其左、右子树深度的较大值再加1。
上面的这个思路用递归的方法很容易实现,只需要对遍历的代码稍作修改即可。参考代码如下:
///
// Get depth of a binary tree
// Input: pTreeNode - the head of a binary tree
// Output: the depth of a binary tree
///
int TreeDepth(SBinaryTreeNode *pTreeNode)
{
// the depth of a empty tree is 0
if(!pTreeNode)
return 0;
// the depth of left sub-tree
int nLeft = TreeDepth(pTreeNode->m_pLeft);
// the depth of right sub-tree
int nRight = TreeDepth(pTreeNode->m_pRight);
// depth is the binary tree
return (nLeft > nRight) ? (nLeft + 1) : (nRight + 1);
}