模式识别与机器学习
GH_HOME
这个作者很懒,什么都没留下…
展开
-
CS231N-1
深度学习的两个基石: 1. 视觉处理流程的第一步是对简单图形结构的处理,包括边缘、排列等。每一列神经元对于固定的形状表示敏感 2. 视觉是分层的: 第一层是边缘结构-2.5D-3D原创 2017-04-25 11:46:24 · 695 阅读 · 0 评论 -
神经网络学习笔记
隐含层数越多,越容易拟合复杂函数 为了拟合复杂函数需要的隐含节点数目,基本上随着隐含层数目的增加呈现指数下降的趋势,也就是说层数越多,神经网络所需要的隐含节点可以越少。层数越深,概念越抽象,需要背诵的知识点(神经网络的隐含节点)就越少。 但是,层数越多,容易出现过拟合以及参数难以调试以及梯度弥散的问题。过拟合:预测模型在训练模型上升高在测试集上下降。泛化能力不行。防止过拟合的方法:dropout原创 2017-08-15 19:44:27 · 1215 阅读 · 0 评论