读取优化视图-输入格式仅选择压缩的列式文件
- parquet文件查询性能
- 500 GB的延迟时间约为30分钟
- 导入现有的Hive表
近实时视图
- 混合、格式化数据
- 约1-5分钟的延迟
- 提供近实时表
增量视图
- 数据集的变更
- 启用增量拉取
Hudi存储层由三个不同的部分组成
元数据–它以时间轴的形式维护了在数据集上执行的所有操作的元数据,该时间轴允许将数据集的即时视图存储在基本路径的元数据目录下。时间轴上的操作类型包括
- 提交(commit),一次提交表示将一批记录原子写入数据集中的过程。单调递增的时间戳,提交表示写操作的开始。
- 清理(clean),清理数据集中不再被查询中使用的文件的较旧版本。
- 压缩(compaction),将行式文件转化为列式文件的动作。
- 索引,将传入的记录键快速映射到文件(如果已存在记录键)。索引实现是可插拔的,Bloom过滤器-由于不依赖任何外部系统,因此它是默认配置,索引和数据始终保持一致。Apache HBase-对少量key更高效。在索引标记过程中可能会节省几秒钟。
- 数据,Hudi以两种不同的存储格式存储数据。实际使用的格式是可插入的,但要求具有以下特征–读优化的列存储格式(ROFormat),默认值为Apache Parquet;写优化的基于行的存储格式(WOFormat),默认值为Apache Avro。
为什么Hudi对于大规模和近实时应用很重要?
Hudi解决了以下限制
- HDFS的可伸缩性限制
- 需要在Hadoop中更快地呈现数据
- 没有直接支持对现有数据的更新和删除
- 快速的ETL和建模
- 要检索所有更新的记录,无论这些更新是添加到最近日期分区的新记录还是对旧数据的更新,Hudi都允许用户使用最后一个检查点时间戳。此过程不用执行扫描整个源表的查询
Hudi的优势
- HDFS中的可伸缩性限制。
- Hadoop中数据的快速呈现
- 支持对于现有数据的更新和删除
- 快速的ETL和建模
*(以上内容主要引用于:[Apache Hudi 详解_风中云彩
必看视频!获取2024年最新Java开发全套学习资料 备注Java
的博客-CSDN博客]( ))*
新架构与湖仓一体
通过湖仓一体、流批一体,准实时场景下做到了:数据同源、同计算引擎、同存储、同计算口径。数据的时效性可以到分钟级,能很好的满足业务准实时数仓的需求。下面是架构图:
MySQL 数据通过 Flink CDC 进入到 Kafka。之所以数据先入 Kafka 而不是直接入 Hudi,是为了实现多个实时任务复用 MySQL 过来的数据,避免多个任务通过 Flink CDC 接 MySQL 表以及 Binlog,对 MySQL 库的性能造成影响。
通过 CDC 进入到 Kafka 的数据除了落一份到离线数据仓库的 ODS 层之外,会同时按照实时数据仓库的链路,从 ODS->DWD->DWS->OLAP 数据库,最后供报表等数据服务使用。实时数仓的每一层结果数据会准实时的落一份到离线数仓,通过这种方式做到程序一次开发、指标口径统一,数据统一。
从架构图上,可以看到有一步数据修正 (重跑历史数据) 的动作,之所以有这一步是考虑到:有可能存在由于口径调整或者前一天的实时任务计算结果错误,导致重跑历史数据的情况。
而存储在 Kafka 的数据有失效时间,不会存太久的历史数据,重跑很久的历史数据无法从 Kafka 中获取历史源数据。再者,如果把大量的历史数据再一次推到 Kafka,走实时计算的链路来修正历史数据,可能会影响当天的实时作业。所以针对重跑历史数据,会通过数据修正这一步来处理。
总体上说,这个架构属于 Lambda 和 Kappa 混搭的架构。流批一体数据仓库的各个数据链路有数据质量校验的流程。第二天对前一天的数据进行对账,如果前一天实时计算的数据无异常,则不需要修正数据,Kappa 架构已经足够。
(本节内容,引用自:37 手游基于 Flink CDC + Hudi 湖仓一体方案实践)
最佳实践
版本搭配
版本选择,这个问题可能会成为困扰大家的第一个绊脚石,下面是hudi中文社区推荐的版本适配:
flink | hudi |
---|---|
1.12.2 | 0.9.0 |
1.13.1 | 0.10.0 |
官方说的支持版本是这样, 不过目前我的1.13和0.10组合并没有配置成功,所以大家还是尽量选择 1.12.2+0.9.0 吧,配合scala 2.11 。
下载hudi
https://mvnrepository.com/artifact/org.apache.hudi/hudi-flink-bundle
执行
如果将 hudi-flink-bundle_2.11-0.9.0.jar
放到了 flink/lib
下,则只需要如下执行即可,否则会出现各种找不到类的异常
bin/sql-client.sh embedded
Flink on hudi
新建maven工程,修改pom如下
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.example</groupId>
<artifactId>flink_hudi_test</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.9.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.9.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.9.2</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-core</artifactId>
<version>1.12.2</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.11</artifactId>
<version>1.12.2</version>
</dependency>
<!-- <dependency>-->
<!-- <groupId>org.apache.flink</groupId>-->
<!-- <artifactId>flink-jdbc_2.12</artifactId>-->
<!-- <version>1.10.3</version>-->
<!-- </dependency>-->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-jdbc_2.11</artifactId>
<version>1.12.2</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>1.12.2</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_2.11</artifactId>
<version>1.12.2</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-api-java-bridge_2.11</artifactId>
<version>1.12.2</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-common</artifactId>
<version>1.12.2</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner_2.11</artifactId>
<version>1.12.2</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner-blink_2.11</artifactId>
<version>1.12.2</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner-blink_2.11</artifactId>
<version>1.12.2</version>
<type>test-jar</type>
</dependency>
<dependency>
<groupId>com.alibaba.ververica</groupId>
<artifactId>flink-connector-mysql-cdc</artifactId>
<version>1.2.0</version>
</dependency>
<!-- <dependency>-->
<!-- <groupId>org.apache.hudi</groupId>-->
<!-- <artifactId>hudi-flink-client</artifactId>-->
<!-- <version>0.9.0</version>-->
<!-- </dependency>-->
<!-- <dependency>-->
<!-- <groupId>org.apache.hudi</groupId>-->
<!-- <artifactId>hudi-common</artifactId>-->
<!-- <version>0.9.0</version>-->
<!-- </dependency>-->
<!-- <dependency>-->
<!-- <groupId>org.apache.hudi</groupId>-->
<!-- <artifactId>hudi-hadoop-mr-bundle</artifactId>-->
<!-- <version>0.9.0</version>-->
<!-- </dependency>-->
<dependency>
<groupId>org.apache.hudi</groupId>
<artifactId>hudi-flink-bundle_2.11</artifactId>
<version>0.9.0</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.49</version>
</dependency>
</dependencies>
</project>
我们通过构建查询insert into t2 select replace(uuid(),'-',''),id,name,description,now() from mysql_binlog
将创建的mysql表,插入到hudi里。
package name.lijiaqi;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.SqlDialect;
import org.apache.flink.table.api.TableResult;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
public class MysqlToHudiExample {
public static void main(String[] args) throws Exception {
EnvironmentSettings fsSettings = EnvironmentSettings.newInstance()
.useBlinkPlanner()
.inStreamingMode()
.build();
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, fsSettings);
tableEnv.getConfig().setSqlDialect(SqlDialect.DEFAULT);
// 数据源表
String sourceDDL =
"CREATE TABLE mysql_binlog (\n" +
" id INT NOT NULL,\n" +
" name STRING,\n" +
" description STRING\n" +
") WITH (\n" +
" 'connector' = 'jdbc',\n" +
" 'url' = 'jdbc:mysql://127.0.0.1:3306/test', \n"+
" 'driver' = 'com.mysql.jdbc.Driver', \n"+
" 'username' = 'root',\n" +
" 'password' = 'dafei1288', \n" +
" 'table-name' = 'test_cdc'\n" +
")";
// 输出目标表
String sinkDDL =
"CREATE TABLE t2(\n" +
"\tuuid VARCHAR(20),\n"+
"\tid INT NOT NULL,\n" +
"\tname VARCHAR(40),\n" +
"\tdescription VARCHAR(40),\n" +
"\tts TIMESTAMP(3)\n"+
// "\t`partition` VARCHAR(20)\n" +
")\n" +
// "PARTITIONED BY (`partition`)\n" +
"WITH (\n" +
"\t'connector' = 'hudi',\n" +
"\t'path' = 'hdfs://172.19.28.4:9000/hudi_t4/',\n" +
"\t'table.type' = 'MERGE_ON_READ'\n" +
")" ;
// 简单的聚合处理
String transformSQL =
"insert into t2 select replace(uuid(),'-',''),id,name,description,now() from mysql_binlog";
tableEnv.executeSql(sourceDDL);
tableEnv.executeSql(sinkDDL);
TableResult result = tableEnv.executeSql(transformSQL);
result.print();
env.execute("mysql-to-hudi");
}
}
查询hudi
package name.lijiaqi;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.SqlDialect;
import org.apache.flink.table.api.TableResult;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
public class ReadHudi {
public static void main(String[] args) throws Exception {
EnvironmentSettings fsSettings = EnvironmentSettings.newInstance()
.useBlinkPlanner()
.inStreamingMode()
.build();
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, fsSettings);
tableEnv.getConfig().setSqlDialect(SqlDialect.DEFAULT);
String sourceDDL =
"CREATE TABLE t2(\n" +
"\tuuid VARCHAR(20),\n"+
"\tid INT NOT NULL,\n" +
"\tname VARCHAR(40),\n" +
"\tdescription VARCHAR(40),\n" +
"\tts TIMESTAMP(3)\n"+
// "\t`partition` VARCHAR(20)\n" +
")\n" +
// "PARTITIONED BY (`partition`)\n" +
"WITH (\n" +
"\t'connector' = 'hudi',\n" +
"\t'path' = 'hdfs://172.19.28.4:9000/hudi_t4/',\n" +
"\t'table.type' = 'MERGE_ON_READ'\n" +
")" ;
tableEnv.executeSql(sourceDDL);
TableResult result2 = tableEnv.executeSql("select * from t2");
result2.print();
env.execute("read_hudi");
}
}
展示结果
Flink CDC 2.0 on Hudi
添加依赖
添加如下依赖到$FLINK_HOME/lib下
- hudi-flink-bundle_2.11-0.10.0-SNAPSHOT.jar (修改 Master 分支的 Hudi Flink 版本为 1.13.2 然后构建)
- hadoop-mapreduce-client-core-2.7.3.jar (解决 Hudi ClassNotFoundException)
最后
为什么我不完全主张自学?
①平台上的大牛基本上都有很多年的工作经验了,你有没有想过之前行业的门槛是什么样的,现在行业门槛是什么样的?以前企业对于程序员能力要求没有这么高,甚至十多年前你只要会写个“Hello World”,你都可以入门这个行业,所以以前要入门是完全可以入门的。
②现在也有一些优秀的年轻大牛,他们或许也是自学成才,但是他们一定是具备优秀的学习能力,优秀的自我管理能力(时间管理,静心坚持等方面)以及善于发现问题并总结问题。
如果说你认为你的目标十分明确,能做到第②点所说的几个点,以目前的市场来看,你才真正的适合去自学。
除此之外,对于绝大部分人来说,报班一定是最好的一种快速成长的方式。但是有个问题,现在市场上的培训机构质量参差不齐,如果你没有找准一个好的培训班,完全是浪费精力,时间以及金钱,这个需要自己去甄别选择。
我个人建议线上比线下的性价比更高,线下培训价格基本上没2W是下不来的,线上教育现在比较成熟了,此次疫情期间,学生基本上都感受过线上的学习模式。相比线下而言,线上的优势以我的了解主要是以下几个方面:
①价格:线上的价格基本上是线下的一半;
②老师:相对而言线上教育的师资力量比线下更强大也更加丰富,资源更好协调;
③时间:学习时间相对而言更自由,不用裸辞学习,适合边学边工作,降低生活压力;
④课程:从课程内容来说,确实要比线下讲的更加深入。
应该学哪些技术才能达到企业的要求?(下图总结)
学。
除此之外,对于绝大部分人来说,报班一定是最好的一种快速成长的方式。但是有个问题,现在市场上的培训机构质量参差不齐,如果你没有找准一个好的培训班,完全是浪费精力,时间以及金钱,这个需要自己去甄别选择。
我个人建议线上比线下的性价比更高,线下培训价格基本上没2W是下不来的,线上教育现在比较成熟了,此次疫情期间,学生基本上都感受过线上的学习模式。相比线下而言,线上的优势以我的了解主要是以下几个方面:
①价格:线上的价格基本上是线下的一半;
②老师:相对而言线上教育的师资力量比线下更强大也更加丰富,资源更好协调;
③时间:学习时间相对而言更自由,不用裸辞学习,适合边学边工作,降低生活压力;
④课程:从课程内容来说,确实要比线下讲的更加深入。
应该学哪些技术才能达到企业的要求?(下图总结)
[外链图片转存中…(img-IQrdpXCd-1716467804568)]
[外链图片转存中…(img-4IoOuxw4-1716467804569)]