安装tensorflow1.xx版本的方法
目前TensorFlow基本已经维护tf2,静态图的tf1在一定的应用场景还是有一定需求,于是就会遇到ERROR:No matching distribution found for tensorflow==1.xx.x。即使切换不同的国内源依然不能解决相应的问题。
下面整理了两种解决方案:
- 使用官方维护的 docker,从而免去自行下载安装的环境的需要
- 下载对应的版本的 离线包, 如: tensorflow-1.14.0-cp36-cp36m-manylinux1_x86_64.whl
官方docker
我这里整理的是nvidia官方维护的tensorflow的docker,https://docs.nvidia.com/deeplearning/frameworks/tensorflow-release-notes/index.html,可以直接table of contents中选择符合自己需求的docker镜像版本,下图展示是部分版本镜像容器中提供各功能包版本。
可以通如下方式启动容器:
# 其中22.12就是上图中Container Version ;tf1是可以选择使用TensorFlow1 还是TensorFlow2;较早的版本有python2的环境及 py3是确定使用的python的版本
docker pull nvcr.io/nvidia/tensorflow:22.12-tf1-py3
# 如果docker版本在19.03以上
docker run --gpus all -it --rm nvcr.io/nvidia/tensorflow:xx.xx-tfx-py3
# 如果docker版本在19.02及以前
nvidia-docker run -it --rm nvcr.io/nvidia/tensorflow:xx.xx-tfx-py3
下载离线包
下载离线包的网址https://pypi.org,直接检索需要功能包名称,如果直接找到自己想要的具体版本的功能包,在点击Download files,选择自己的需求即可。
如果具体版本号并不对应,则点击Release history进行查找
选择符合自己需求的版本即可,如果需要gpu版则需要通过检索tensorflow-gpu进行查找
# 将离线包下载到本地,完成离线包安装
pip install path/tensorflow-1.14.0-cp36-cp36m-manylinux1_x86_64.whl
注:述整理的网址可能在一些网络情况下打不开,需要多尝试几次,当然如果有科学上网工具自然就没有此类问题了。