二分图(bipartite praph)整理

设G=(V,E)是一个无向图。如顶点集V可分割为两个互不相交的子集V1,V2之并,并且图中每条边依附的两个顶点都分属于这两个不同的子集。则称图G为二分图(bipartite praph)。。二分图也可记为G=(V1,V2,E)。例如:

                          二部图SCG
表示学生与课程之间关系的二部图SCG,其顶点集由学生集和课程集组成。
图的匹配可形式描述如下:

   给定一个图G=(V,{E}),若边集E的一个子集M中任意两条边都不依附图中同一顶点,则称M是图的一个匹配(matching),选择这样的边的最大子集称为图的最大匹配问题(maxiimal matching problem)。  

如果一个匹配中,图中的每个顶点都和图中某条边相关联,则称此匹配为完全匹配,也称作完备,完美匹配。
  反映教师与课程关系的二部图TCG及它的一个最大匹配

 

  求最大匹配的一种显而易见的算法是:先找出全部匹配,然后保留匹配数最多的。但是这个算法的时间复杂度为边数的指数级函数。因此,需要寻求一种更加高效的算法。下面介绍用增广路求最大匹配的方法(称作匈牙利算法,匈牙利数学家Edmonds于1965年提出)。
  增广路的定义(也称增广轨或交错轨):
  若P是图G中一条连通两个未匹配顶点的路径,并且属于M的边和不属于M的边(即已匹配和待匹配的边)在P上交替出现,则称P为相对于M的一条增广路径。
  由增广路的定义可以推出下述三个结论:
  1-P的路径长度必定为奇数,第一条边和最后一条边都不属于M。
  2-将M和P进行异或操作(去同存异)可以得到一个更大的匹配M’。
  3-M为G的最大匹配当且仅当不存在M的增广路径。
  算法轮廓:
  (1)置M为空
  (2)找出一条增广路径P,通过异或操作获得更大的匹配M’代替M
  (3)重复(2)操作直到找不出增广路径为止

时间空间复杂度

  时间复杂度 邻接矩阵:最坏为O(n^3) 邻接表:O(mn)
  空间复杂度 邻接矩阵:O(n^2) 邻接表:O(m+n)

邻接矩阵-C

  

 

二分图匹配算法总结

 

二分图最大匹配的匈牙利算法

二分图是这样一个图,它的顶点可以分类两个集合X和Y,所有的边关联在两个顶点中,恰好一个属于集合X,另一个属于集合Y。

最大匹配: 图中包含边数最多的匹配称为图的最大匹配。

完美匹配: 如果所有点都在匹配边上,称这个最大匹配是完美匹配。

最小覆盖: 最小覆盖要求用最少的点(X集合或Y集合的都行)让每条边都至少和其中一个点关联。可以证明:最少的点(即覆盖数)=最大匹配数

最小路径覆盖:

用尽量少的不相交简单路径覆盖有向无环图G的所有结点。解决此类问题可以建立一个二分图模型。把所有顶点i拆成两个:X结点集中的i和Y结点集中的i',如果有边i->j,则在二分图中引入边i->j',设二分图最大匹配为m,则结果就是n-m。

最大独立集问题:

在N个点的图G中选出m个点,使这m个点两两之间没有边.求m最大值.

如果图G满足二分图条件,则可以用二分图匹配来做.最大独立集点数 = N - 最大匹配数

 

 

第一次写文章,把自己从网站上看到的整理了一下,希望对大家有所帮助。

 

 

 

 参考网址:

http://baike.baidu.com/view/501092.htm

http://hi.baidu.com/sting0218/blog/item/18a55fa18f2ead8d47106488.html

http://www.gsrtvu.edu.cn/kj/jinchang/date/6.7.htm

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值