二分图/二部图(bipartite graph)

本文深入探讨了图论中的二分图概念,解释了如何判断一个无向图是否为二分图,并介绍了匹配的定义,包括最大匹配的重要性。通过实例展示了匹配边和匹配点的概念,帮助理解图的匹配理论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二分图定义:

对于一个无向图G(V,E),V为顶点集合,E为边集合,存在两个集合,V1,V2∈V,且V1,V2互不相交 ,且E的两个端点分别属于V1,V2,那么顶点集合V与边集合E构成一个二分图,也叫二部图。

匹配:

在图论中,一个匹配(matching)是一个边的集合,其中任意两条边都没有公共结点。 

如下图(u1-v1,1; u2-v1,2; u4-v2,2; )构成一个匹配

匹配点:

构成匹配的顶点,如上图中(u1,u2,u4,v1,1,v1,2,v2,2)

匹配边:

构成匹配的边(u1-v1,1; u2-v1,2; u4-v2,2; )

最大匹配

一个图的所有匹配中,边数最多匹配称为这个图的最大匹配。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值