整数划分问题 动态规划解决 (C++)

大致内容

将一个整数 N N N 划分成 M M M 个数字,使得这 M M M个数字的总和为 N N N 其中, 划分出来的整数可以为 0 0 0 , 同时不同的排列算一种组合, 求总共能有几个不同的组合

相似的题目

POJ 1664 放苹果
AcWing 1050 鸣人的影分身

代码展示

#include<iostream>
#include<algorithm>

using namespace std;

const int N = 15;

int m, n;
int dp[N][N];

int main()
{
    cin >> m >> n;
    dp[0][0] = 1;
    for(int i = 0; i <= m; i++)
        for(int j = 1; j <= n; j++)
        {
            dp[i][j] = dp[i][j - 1];
            if (i >= j) dp[i][j] += dp[i - j][j];
        }
    cout << dp[m][n] << endl;
    return 0;
}

思路

dp的含义

dp[i][j] 表示总和为i, 分了j个数字的所有的方案

划分的依据

划分的依据是整个划分的数字中,最小的数字是否为 0 0 0

状态转移方程

通过这个划分,可以将左右的组合划分成两部分,一部分为 在这个组合中最小值为0, 另一部分则是最小值不是0

由于删去0以后对这部分的组合数量不影响,所以可以将0删去, 所以划分了j - 1个,由于删去0以后对剩余的数的总和不影响, 所以此时的dp表示为 dp[i][j - 1]

对于不是0的部分, 将组合中的数全部同时减1以后, 该组合的数量和没有减1以后的组合的数量相同, 所以可以减1. 此时, 所有的数的总和为 i - j, 由于只是减1, 所以划分的数量不变, 为j, 此时的dp表示为 dp[i - j][j]

所以状态转移方程则是
dp[i][j] = dp[i][j - 1] + dp[i - j][j]

初始化

当拆分0的时候,总共能拆分0次,那么就有一种拆分方法,则是什么都不拆
dp[0][0] = 1

第二种算法

完全背包的思路来做
(代码仅供参考)

#include<iostream>
#include<algorithm>

using namespace std;

const int N = 1010, mod = 1e9 + 7;

int n;
int dp[N];       // 总从前i个数中选,总数为j的方案

int main() {
	cin >> n;
	dp[0] = 1;
	for (int i = 1; i <= n; i++)
		for (int j = i; j <= n; j++)
			dp[j] = (dp[j] + dp[j - i]) % mod;
	cout << dp[n] << endl;
	return 0;
}

dp[i][j]表示在前i个物品中选,总数为j的方案的个数

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 对于动态规划的 C 语言代码模板,可以参考这样的例子:int dp[MAX_N][MAX_M]; // 记录状态的数组 for (int i = 0; i < MAX_N; i++) for (int j = 0; j < MAX_M; j++) { // 初始状态 dp[i][j] = 0; // 转移方程 for (int k = 0; k < MAX_K; k++) dp[i][j] = max(dp[i][j], dp[i][k] + dp[k][j]); } ### 回答2: 动态规划(Dynamic Programming)是一种求解最优化问题的方法,它将问题分解成若干个子问题,并以递推的方式求解子问题,从而得到原问题的最优解。 下面是一个使用C语言实现动态规划的代码模板: ```c #include <stdio.h> // 定义问题的规模 #define MAX_N 100 // 定义存储子问题解的数组 int dp[MAX_N]; // 定义递归函数,求解最优解 int solve(int n) { // 判断是否已经计算过最优解 if (dp[n] != -1) { return dp[n]; } // 递归终止条件 if (n == 0 || n == 1) { return 1; } // 递推计算子问题的最优解 int result = 0; for (int i = 0; i <= n - 1; i++) { result += solve(i) * solve(n - i - 1); } // 存储最优解 dp[n] = result; // 返回最优解 return result; } int main() { // 初始化存储子问题解的数组 for (int i = 0; i < MAX_N; i++) { dp[i] = -1; } // 输入问题的规模 int n; printf("请输入问题的规模: "); scanf("%d", &n); // 调用求解最优解的函数 int result = solve(n); // 输出最优解 printf("最优解为: %d\n", result); return 0; } ``` 以上代码演示了一个简单的动态规划问题,即求解斐波那契数列第n项的值。其中,使用dp数组存储子问题的解,通过递推的方式计算最优解。在使用之前,需要对dp数组进行初始化,以确保每个子问题只计算一次。 在实际使用中,可以根据具体问题对代码进行相应的修改和优化。 ### 回答3: 动态规划(Dynamic Programming)是一种高效的算法设计方法,可以用来解决许多优化问题。它适用于具有重叠子问题和最优子结构的问题,通过将问题划分为多个重叠子问题,利用已计算的结果来避免重复计算,从而提高算法效率。 下面是一个C语言的动态规划代码模板: ```c #include <stdio.h> int dp[100]; // 定义一个数组,用来保存子问题的解 int fibonacci(int n) { if (n <= 1) { return n; } // 先检查是否已经计算过该子问题的解,如果已经计算过则直接返回结果,避免重复计算 if (dp[n] != 0) { return dp[n]; } // 如果没有计算过,则进行计算并保存结果 dp[n] = fibonacci(n-1) + fibonacci(n-2); return dp[n]; } int main() { int n; printf("请输入一个正整数:"); scanf("%d", &n); int result = fibonacci(n); printf("结果为:%d\n", result); return 0; } ``` 这是一个计算斐波那契数列的例子。在代码中,dp数组用来保存每一个子问题的解,以避免重复计算。当需要计算某个子问题的解时,先检查dp数组是否已经有了该子问题的解,如果有则直接返回结果,如果没有则进行计算并保存结果。通过这种方式,可以大大减少计算量,提高算法效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值