整数划分 (完全背包问题)

解法一:完全背包思路解题

可以将它看成是取1~n的石头,每个石头不限个数,需要取总和恰好是 n.

 

 即最终状态转移方程式是 f[i][j]=f[i-1][j]+f[i][j-i]

900. 整数划分 - AcWing题库


//一维优化 和完全背包优化方式一样 这里不做过多赘述了
#include<iostream>
using namespace std;
const int N=1010,mod=1e9+7;
 
int n;
int f[N];
 
int main()
{
    cin>>n;
    f[0]=1;
    for(int i=1;i<=n;i++)
        for(int j=i;j<=n;j++)
            f[j]=(f[j]+f[j-i])%mod;
    
    cout<<f[n]<<endl;
    return 0;
}

解法二:其他算法

对于 f[i,j] 一共两种情况 

1、方案中的数最小值是1,那么我们可以把这个 1 去掉,然后找总和是 i - 1 ,表示成 j - 1 个数的和的方案。

2、方案中的数都大于1,那么我们可以将方案中每一个数都减1(一共减了 j 个1),那么方案中数的数量并没有发生改变,那么就是找总和是 i - j,表示成 j 个数的和的方案。

最后答案 ans 需要将每一个加上即可。

#include<iostream>
using namespace std;
const int N=1010,mod=1e9+7;

int n;
int f[N][N];

int main()
{
    cin>>n;
    f[0][0]=1;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=i;j++)//数i 最多能表示 i 个 1 相加
            f[i][j]=(f[i-1][j-1]+f[i-j][j])%mod;
    
    int ans=0;
    for(int i=1;i<=n;i++) ans=(ans+f[n][i])%mod;
    //由1个数表示 2个数表示 …… n个数表示 相加起来
    cout<<ans<<endl;
    return 0;
}

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值