图论问题的算法 (C++)

以下题目和算法思路均来自AcWing
这个文章当作我的笔记了,方便以后的复习
在这里再次感谢y总

图论问题的算法

有向图的拓扑排序

AcWing 848.有向图的拓扑序列

给定一个 n n n个点 m m m条边的有向图,点的编号是 1 1 1 n n n,图中可能存在重边和自环。

请输出任意一个该有向图的拓扑序列,如果拓扑序列不存在,则输出 − 1 −1 1

若一个由图中所有点构成的序列 A A A满足:对于图中的每条边 ( x , y ) (x,y) (x,y) x x x A A A中都出现在 y y y之前,则称 A A A是该图的一个拓扑序列。

输入格式
第一行包含两个整数 n n n m m m

接下来 m m m行,每行包含两个整数 x x x y y y,表示存在一条从点 x x x到点 y y y的有向边 ( x , y ) (x,y) (x,y)

输出格式
共一行,如果存在拓扑序列,则输出任意一个合法的拓扑序列即可。

否则输出 − 1 −1 1

数据范围
1 ≤ n , m ≤ 105 1≤n,m≤105 1n,m105
输入样例:

3 3
1 2
2 3
1 3

输出样例:

1 2 3

通过入度的数量来判断当前的点是否是该输出

C++ 代码

#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#include<vector>

using namespace std;

const int N = 100010;

int n, m;
int h[N], e[N], ne[N], idx;
int din[N];                     // 入度的大小
vector<int> ans;

void add(int a, int b) {
    e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}

void topsort() {
    queue<int> store;
    for (int i = 1; i <= n; i++)
        if (din[i] == 0)
            store.push(i);

    while (store.size()) {
        auto t = store.front();
        store.pop();
        
        ans.push_back(t);

        for (int i = h[t]; ~i; i = ne[i]) {
            int j = e[i];
            if (--din[j] == 0)
                store.push(j);
        }
    }
}

int main() {
    memset(h, -1, sizeof h);
    cin >> n >> m;
    for (int i = 0; i < m; i++) {
        int x, y;
        scanf("%d%d", &x, &y);
        add(x, y);
        din[y]++;
    }

    topsort();

    if (ans.size() != n) cout << "-1" << endl;
    else {
        for (int i = 0, len = ans.size(); i < len; i++)
            printf("%d ", ans[i]);
    }
    return 0;
}

单源最短路径算法

dijkstra

AcWing 849. Dijkstra求最短路 I

给定一个 n n n 个点 m m m 条边的有向图,图中可能存在重边和自环,所有边权均为正值。

请你求出 1 1 1 号点到 n n n 号点的最短距离,如果无法从 1 1 1 号点走到 n n n 号点,则输出 − 1 −1 1

输入格式
第一行包含整数 n n n m m m

接下来 m m m行每行包含三个整数 x , y , z x,y,z x,y,z,表示存在一条从点 x x x 到点 y y y 的有向边,边长为 z z z

输出格式
输出一个整数,表示 1 1 1 号点到 n n n 号点的最短距离。

如果路径不存在,则输出 − 1 −1 1

数据范围
1 ≤ n ≤ 500 1≤n≤500 1n500,
1 ≤ m ≤ 105 1≤m≤105 1m105,
图中涉及边长均不超过 10000 10000 10000

输入样例:

3 3
1 2 2
2 3 1
1 3 4

输出样例:

3

算法的步骤:

  1. 寻找路径最小的点
  2. 用这个点更新他的周围的点
  3. 将点添加到路径中

C++ 代码

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;

const int N = 510;

int n, m;
int g[N][N];	// 从i到j的距离
int dist[N];	// 到起点的距离
bool st[N];		// 是否已经被遍历过

void dijkstra(int start) {
    memset(dist, 0x3f, sizeof dist);												// 初始化距离
    dist[start] = 0;

    for (int i = 0; i < n - 1; i ++) {
        int minv = -1;
        for (int j = 1; j <= n; j++)                        // 寻找路径最小的点
            if (!st[j] && (minv == -1 || dist[minv] > dist[j]))
                minv = j;

        for (int j = 1; j <= n; j++)                        // 用这个点更新周围的点
            dist[j] = min(dist[j], dist[minv] + g[minv][j]);

        st[minv] = true;                                    // 将点添加到路径中
    }
}

int main() {
    memset(g, 0x3f,sizeof g);   //初始化地图

    cin >> n >> m;
    while (m--) {
        int x, y, z;
        scanf("%d%d%d", &x, &y, &z);
        g[x][y] = min(g[x][y], z);
    }

    dijkstra(1);

    if (dist[n] == 0x3f3f3f3f)
        cout << -1 << endl;
    else
        cout << dist[n] << endl;

    return 0;
}

dijkstra堆优化版

AcWing 850. Dijkstra求最短路 II

给定一个 n n n 个点 m m m 条边的有向图,图中可能存在重边和自环,所有边权均为非负值。

请你求出 1 1 1 号点到 n n n 号点的最短距离,如果无法从 1 1 1 号点走到 n n n 号点,则输出 − 1 −1 1

输入格式
第一行包含整数 n n n m m m

接下来 m m m 行每行包含三个整数 x , y , z x,y,z x,y,z,表示存在一条从点 x x x 到点 y y y 的有向边,边长为 z z z

输出格式
输出一个整数,表示 1 1 1 号点到 n n n 号点的最短距离。

如果路径不存在,则输出 − 1 −1 1

数据范围
1 ≤ n , m ≤ 1.5 × 1 0 5 1≤n,m≤1.5×10^{5} 1n,m1.5×105,
图中涉及边长均不小于 0 0 0,且不超过 10000 10000 10000
数据保证:如果最短路存在,则最短路的长度不超过 1 0 9 10^{9} 109

输入样例:

3 3
1 2 2
2 3 1
1 3 4

输出样例:

3

用堆可以优化查找最小路径的这个过程

C++代码

#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>

#define x first
#define y second

using namespace std;

typedef pair<int, int> PII;

const int N = 150010;

int n, m;
int h[N], e[N], ne[N], w[N], idx;
int dist[N];
bool st[N];

void add(int a, int b, int c) {
    e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
}

void dijkstra(int start) {
    priority_queue<PII, vector<PII>, greater<PII>> store;
    memset(dist, 0x3f, sizeof dist);
    dist[start] = 0;
    store.push({0, start});

    while (store.size()) {
        auto temp = store.top();								// 获取最短路径的点
        store.pop();

        int distance = temp.x, ver = temp.y;

        if (st[ver]) continue;									// 将点添加到路径中
        st[ver] = true;

        for (int i = h[ver]; ~i; i = ne[i]) {		// 更新这个点连接的点的距离
            int j = e[i];
            if (dist[j] > dist[ver] + w[i]) {
                dist[j] = dist[ver] + w[i];
                store.push({dist[j], j});
            }
        }
    }
}

int main() {
    memset(h, -1, sizeof h);   //初始化地图

    cin >> n >> m;
    while (m--) {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
    }

    dijkstra(1);

    if (dist[n] == 0x3f3f3f3f)
        cout << -1 << endl;
    else
        cout << dist[n] << endl;

    return 0;
}

Bellman-Ford

AcWing 853. 有边数限制的最短路

给定一个 n n n 个点 m m m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。

请你求出从 1 1 1 号点到 n n n 号点的最多经过 k k k 条边的最短距离,如果无法从 1 1 1 号点走到 n n n 号点,输出 i m p o s s i b l e impossible impossible

注意:图中可能 存在负权回路 。

输入格式
第一行包含三个整数 n , m , k n,m,k n,m,k

接下来 m m m 行,每行包含三个整数 x , y , z x,y,z x,y,z,表示存在一条从点 x x x 到点 y y y 的有向边,边长为 z z z

输出格式
输出一个整数,表示从 1 1 1 号点到 n n n 号点的最多经过 k k k 条边的最短距离。

如果不存在满足条件的路径,则输出 i m p o s s i b l e impossible impossible

数据范围
1 ≤ n , k ≤ 500 1≤n,k≤500 1n,k500,
1 ≤ m ≤ 10000 1≤m≤10000 1m10000,
任意边长的绝对值不超过 10000 10000 10000

输入样例:

3 3 1
1 2 1
2 3 1
1 3 3

输出样例:

3

bellman-ford比dijkstra更有广泛性, 他处理的图可以有负权边,dijkstra则不可以

核心思想:

对所有的边进行n-1轮松弛操作,因为在一个含有n个顶点的图中,任意两点之间的最短路径最多包含n-1边。换句话说,第1轮在对所有的边进行松弛后,得到的是源点最多经过一条边到达其他顶点的最短距离;第2轮在对所有的边进行松弛后,得到的是源点最多经过两条边到达其他顶点的最短距离;第3轮在对所有的边进行松弛后,得到的是源点最多经过一条边到达其他顶点的最短距离…

https://zhuanlan.zhihu.com/p/72185593

C++ 代码

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;

const int N = 510, M = 10010, INF = 0x3f3f3f3f;

int n, m, k;
int h[N], e[M], ne[M], w[M], idx;
int dist[N], backup[N];

void add(int a, int b, int c) {
    e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
}

void bellman_ford(int start) {
    memset(dist, 0x3f,sizeof dist);
    dist[start] = 0;
    for (int v = 0; v < k; v++){
        memcpy(backup, dist, sizeof dist);
        for (int i = 1; i <= n; i++)
            for (int j = h[i]; ~j; j = ne[j]) {
                int t = e[j];
                dist[t] = min(dist[t], backup[i] + w[j]);   // 松弛操作
            }
    }
}

int main() {
    memset(h, -1, sizeof h);

    cin >> n >> m >> k;
    while (m --) {
        int x, y, z;
        scanf("%d%d%d", &x, &y, &z);
        add(x, y, z);
    }

    bellman_ford(1);

    if (dist[n] > INF / 2) cout << "impossible" << endl;
    else cout << dist[n] << endl;

    return 0;
}

SPFA

AcWing 851. spfa求最短路

给定一个 n n n 个点 m m m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。

请你求出 1 1 1 号点到 n n n 号点的最短距离,如果无法从 1 1 1 号点走到 n n n 号点,则输出 i m p o s s i b l e impossible impossible

数据保证不存在负权回路。

输入格式
第一行包含整数 n n n m m m

接下来 m m m 行每行包含三个整数 x , y , z x,y,z x,y,z,表示存在一条从点 x x x 到点 y y y 的有向边,边长为 z z z

输出格式
输出一个整数,表示 1 1 1 号点到 n n n 号点的最短距离。

如果路径不存在,则输出 i m p o s s i b l e impossible impossible

数据范围
1 ≤ n , m ≤ 1 0 5 1≤n,m≤10^{5} 1n,m105,
图中涉及边长绝对值均不超过 10000 10000 10000

输入样例:

3 3
1 2 5
2 3 -3
1 3 4

输出样例:

2

堆优化版的bellman-ford算法, 在最坏的情况下和bellman-ford算法是一个复杂度

C++ 代码

#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>

using namespace std;

const int N = 100010, INF = 0x3f3f3f3f;

int n, m;
int h[N], e[N], ne[N], w[N], idx;
int dist[N];
bool st[N];

void add(int a, int b, int c) {
    e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
}

void spfa(int start) {
    memset(dist, 0x3f,sizeof dist);
    dist[start] = 0;
    queue<int> store;
    store.push(start);
    st[start] = true;

    while (store.size()) {
        int temp = store.front();
        store.pop();

        st[temp] = false;
        for (int i = h[temp]; ~i; i = ne[i]) {
            int j = e[i];
            if (dist[j] > dist[temp] + w[i]) {  // 松弛操作
                dist[j] = dist[temp] + w[i];
                if (!st[j]) {                   // 当队列中没有当前的点的时候才会添加
                    store.push(j);
                    st[j] = true;
                }
            }
        }
    }
}

int main() {
    memset(h, -1, sizeof h);

    cin >> n >> m;
    while (m--) {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
    }

    spfa(1);

    if (dist[n] > INF / 2) cout << "impossible" << endl;
    else cout << dist[n] << endl;

    return 0;
}

多源最短路算法

Floyed

AcWing 854. Floyd求最短路

给定一个 n n n 个点 m m m 条边的有向图,图中可能存在重边和自环,边权可能为负数。

再给定 k k k 个询问,每个询问包含两个整数 x x x y y y,表示查询从点 x x x 到点 y y y 的最短距离,如果路径不存在,则输出 i m p o s s i b l e impossible impossible

数据保证图中不存在负权回路。

输入格式
第一行包含三个整数 n , m , k n,m,k n,m,k

接下来 m m m 行,每行包含三个整数 x , y , z x,y,z x,y,z,表示存在一条从点 x x x 到点 y y y 的有向边,边长为 z z z

接下来 k k k 行,每行包含两个整数 x , y x,y x,y,表示询问点 x x x 到点 y y y 的最短距离。

输出格式
k k k 行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出 i m p o s s i b l e impossible impossible

数据范围
1 ≤ n ≤ 200 1≤n≤200 1n200,
1 ≤ k ≤ n 2 1≤k≤n2 1kn2
1 ≤ m ≤ 20000 1≤m≤20000 1m20000,
图中涉及边长绝对值均不超过 10000 10000 10000

输入样例:

3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3

输出样例:

impossible
1

C++ 代码

#include<iostream>
#include<algorithm>
#include<cstring>

using namespace std;

const int N = 210, INF = 0x3f3f3f3f;

int n, m, k;
int g[N][N];

void floyed() {
    for (int k = 1; k <= n; k++)
        for (int i = 1; i <= n; i++)
            for (int j = 1 ; j <= n; j++)
                g[i][j] = min(g[i][j], g[i][k] + g[k][j]);
}

int main() {
    memset(g, 0x3f,sizeof g);
    cin >> n >> m >> k;
    for (int i = 1; i <= n; i++)
        g[i][i] = 0;
        
    for (int i = 1; i <= m; i++) {
        int x, y, z;
        scanf("%d%d%d", &x, &y, &z);
        g[x][y] = min(g[x][y], z);
    }

    floyed();

    while (k--) {
        int x, y;
        scanf("%d%d", &x, &y);
        if (g[x][y] > INF / 2) printf("impossible\n");
        else printf("%d\n", g[x][y]);
    }

    return 0;
}

最小生成树算法

prim

AcWing 858. Prim算法求最小生成树

给定一个 n n n 个点 m m m 条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出 i m p o s s i b l e impossible impossible

给定一张边带权的无向图 G = ( V , E ) G=(V,E) G=(V,E),其中 V 表示图中点的集合, E E E 表示图中边的集合, n = ∣ V ∣ n=|V| n=V m = ∣ E ∣ m=|E| m=E

V V V 中的全部 n n n 个顶点和 E E E n − 1 n−1 n1 条边构成的无向连通子图被称为 G G G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G G G 的最小生成树。

输入格式
第一行包含两个整数 n n n m m m

接下来 m m m 行,每行包含三个整数 u , v , w u,v,w u,v,w,表示点 u u u 和点 v v v 之间存在一条权值为 w w w 的边。

输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 i m p o s s i b l e impossible impossible

数据范围
1 ≤ n ≤ 500 1≤n≤500 1n500,
1 ≤ m ≤ 1 0 5 1≤m≤10^{5} 1m105,
图中涉及边的边权的绝对值均不超过 10000 10000 10000

输入样例:

4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4

输出样例:

6

普里姆算法查找最小生成树的过程,采用了贪心算法的思想。对于包含 N 个顶点的连通网,普里姆算法每次从连通网中找出一个权值最小的边,这样的操作重复 N-1 次,由 N-1 条权值最小的边组成的生成树就是最小生成树。

http://c.biancheng.net/algorithm/prim.html

算法步骤

  1. 初始化距离,将他初始化为正无穷
  2. n次迭代
    1. 找到不在集合中的距离最小的点 t t t
    2. t t t 来更新其他点到集合的距离
    3. t t t 加到集合中

C++ 代码

#include<iostream>
#include<algorithm>
#include<cstring>

using namespace std;

const int N = 510, INF = 0x3f3f3f3f;

int n, m;
int g[N][N];
int dist[N];
bool st[N];

int prim() {
    memset(dist, 0x3f,sizeof dist);

    int res = 0;
    for (int i = 0; i < n; i++) {
        int t = -1;
        for (int j = 1; j <= n; j++) {
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;
        }

        if (i && dist[t] == INF) return INF;

        if (i) res += dist[t];
        st[t] = true;

        for (int j = 1; j <= n; j++) dist[j] = min(dist[j], g[t][j]);
    }

    return res;
}

int main() {
    memset(g, 0x3f,sizeof g);

    cin >> n >> m;
    
    for (int i = 1; i <= n; i++) g[i][i] = 0;
    
    while (m--) {
        int u, v, w;
        scanf("%d%d%d", &u, &v, &w);
        g[u][v] = min(g[u][v], w);
        g[v][u] = min(g[v][u], w);
    }

    int sum = prim();
    if (sum == INF) cout << "impossible" << endl;
    else cout << sum << endl;
    return 0;
}

Kruskal

AcWing 859. Kruskal算法求最小生成树

给定一个 n n n 个点 m m m 条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出 i m p o s s i b l e impossible impossible

给定一张边带权的无向图 G = ( V , E ) G=(V,E) G=(V,E),其中 V 表示图中点的集合, E E E 表示图中边的集合, n = ∣ V ∣ n=|V| n=V m = ∣ E ∣ m=|E| m=E

V V V 中的全部 n n n 个顶点和 E E E n − 1 n−1 n1 条边构成的无向连通子图被称为 G G G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G G G 的最小生成树。

输入格式
第一行包含两个整数 n n n m m m

接下来 m m m 行,每行包含三个整数 u , v , w u,v,w u,v,w,表示点 u u u 和点 v v v 之间存在一条权值为 w w w 的边。

输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 i m p o s s i b l e impossible impossible

数据范围
1 ≤ n ≤ 1 0 5 1≤n≤10^{5} 1n105,
1 ≤ m ≤ 2 ∗ 1 0 5 1≤m≤2∗10^{5} 1m2105,
图中涉及边的边权的绝对值均不超过 1000 1000 1000

输入样例:

4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4

输出样例:

6

适合稀疏图

算法思路:

  1. 先将所有的边按权重从小到大的进行排序
  2. 枚举每条边 ( a , b ) (a, b) (a,b) 权重是 c c c a , b a,b a,b 不连通,则将这条边加入到集合中

C++ 代码

#include<iostream>
#include<algorithm>

using namespace std;

const int N = 200010;

int n, m;
int p[N];

struct Edge {
    int a, b, w;

    bool operator< (const Edge &W) const {
        return w < W.w;
    }
}edges[N];

int find(int x) {
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

int main() {
    scanf("%d%d", &n, &m);
    for (int i = 0; i < m; i++) {
        int a, b, w;
        scanf("%d%d%d", &a, &b, &w);
        edges[i] = {a, b, w};
    }

    sort(edges, edges + m);

    for (int i = 1; i <= n; i++) p[i] = i;

    int res = 0, cnt = 0;   // 最小生成树的所有数边的权重之和, 加入的边数
    for (int i = 0; i < m; i++) {
        int a = edges[i].a, b = edges[i].b, w = edges[i].w;

        a = find(a), b = find(b);
        if (a != b) {
            p[a] = b;   // 将两个点合并
            res += w;
            cnt++;
        }
    }
    if (cnt < n - 1) cout << "impossible" << endl;
    else cout << res << endl;
}

染色法判定二分图

AcWing 860. 染色法判定二分图

给定一个 n n n 个点 m m m 条边的无向图,图中可能存在重边和自环。

请你判断这个图是否是二分图。

输入格式
第一行包含两个整数 n n n m m m

接下来 m m m 行,每行包含两个整数 u u u v v v,表示点 u u u 和点 v v v 之间存在一条边。

输出格式
如果给定图是二分图,则输出 Y e s Yes Yes,否则输出 N o No No

数据范围
1 ≤ n , m ≤ 1 0 5 1≤n,m≤10^{5} 1n,m105
输入样例:

4 4
1 3
1 4
2 3
2 4

输出样例:

Yes

C++ 代码

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;

const int N = 100010;

int n, m;
int h[N], e[N * 2], ne[N * 2], idx;
int g[N];

void add(int a, int b) {
    e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}

bool dfs(int u, int a) {
    g[u] = a;
    for (int i = h[u]; ~i; i = ne[i]) {
        int j = e[i];
        if (!g[j]) {
            if(!dfs(j, 3 - a)) return false;
        }
        else if (g[j] == a) return false;
    }
    return true;
}

int main() {
    memset(h, -1, sizeof h);
    cin >> n >> m;
    while (m--) {
        int u, v;
        scanf("%d%d", &u, &v);
        add(u, v);
        add(v, u);
    }

    bool flag = true;
    for (int i = 1; i <= n; i++) {
        if (!g[i]) {
            if(!dfs(i, 1)){
                flag = false;
                break;
            }
        }
    }

    if (flag) cout << "Yes" << endl;
    else cout << "No" << endl;
}

笔记

最短路和最小生成树的区别

最小生成数能保证整个拓扑图的所有路径之和最小, 但不能保证任意两点之间是最短路径

最短路径是从一点出发, 到达目的地的路径最小

单源最短路和多源最短路的区别

单源最短路: 从一个点出发到任意一个点的距离最短

多源最短路: 从任意点出发到任意点的距离最短

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值