
人工智能
GhostintheCode
来自大山深处的一名IT小学生
展开
-
Pytorch阅读文档之flatten函数
pytorch中flatten函数torch.flatten()#展平一个连续范围的维度,输出类型为Tensortorch.flatten(input, start_dim=0, end_dim=-1) → Tensor# Parameters:input (Tensor) – 输入为Tensor#start_dim (int) – 展平的开始维度#end_dim (int) – 展...原创 2019-10-13 11:42:45 · 59314 阅读 · 3 评论 -
机器学习面试之如何解决类别不平衡?
机器学习面试之如何解决类别不平衡?此内容是读西瓜书无意中看到的,觉得很重要,总结一下。原创 2019-07-23 13:51:16 · 317 阅读 · 0 评论 -
机器学习面试之SVM和LR的区别与联系
机器学习面试之SVM和LR的区别与联系这篇文章属于集百家之长,汇总一下,方便准备面试的人复习,整理一下别的资料,让自己有个理解的过程。对于没有什么统计知识背景的盆友,可能在看这篇文章有点麻烦,不过你可以就当混个眼熟。从线性回归到逻辑回归其实周老师已经写的很明白了(半年前我看这个的时候,边看还边骂,写的什么东西,一点也看不懂,周老师莫怪我,年少不懂事。我的经验总结下来就是查的资料多...原创 2019-07-23 17:29:15 · 675 阅读 · 0 评论 -
梯度下降和正规方程的区别
梯度下降和正规方程的区别梯度下降正规方程需要选择学习速率,当然如果不设置也会有默认值不需要需要多次迭代一次求导得出当特征数量n大时也能比较好的适用需要计算(XTX)−1(X^TX)^{-1} (XTX)−1 如果特征数量N较大则运算代价大,因为矩阵的逆的计算时间复杂度为O(n3)O(n^3)O(n3) 通常来说当n小于10000时还是可以接受的适用于...原创 2019-06-20 21:35:24 · 4090 阅读 · 0 评论 -
2017年KDD时间检验奖
时间检验奖SIGKDD 每年都会奖励一篇论文,这篇论文要在过去十年间对研究,方法论以及实践产生重大影响,这就是所谓的时间检验奖。这次授予是为了表彰Thorsten的论文《线性时间内训练线性支持向量机》。这次的时间检验奖就是奖励他如何把支持向量机的训练达到线性复杂度,从而使支持向量机在大规模数据上的应用成为可能。贡献贡献一贡献一贡献一:他致力于把支持向量机的基本算法,也就是仅仅支持分类问题...翻译 2019-04-10 10:01:02 · 327 阅读 · 0 评论 -
人工智能数学基础之最优化方法
人工智能数学基础之最优化方法原创 2018-12-06 17:51:58 · 1493 阅读 · 0 评论 -
一文带你了解机器学习基础:梯度下降(Gradient Descent)和最小二乘法
一文带你了解机器学习基础:梯度下降和最小二乘法在开始本文之前,有兴趣的可以浏览一下这个文章,人工智能中的最优化问题。人工智能数学基础之最优化方法两者的区别最小二乘法跟梯度下降法都是通过求导来求损失函数的最小值,那它们有什么区别呢。相同本质相同:两种方法都是在给定已知数据(independent & dependent variables)的前提下对dependent vari...原创 2018-12-12 19:00:15 · 1838 阅读 · 0 评论 -
人工智能数学基础之概率论
人工智能数学基础之概率论原创 2018-11-30 08:43:19 · 600 阅读 · 0 评论 -
人工智能数学基础之数理统计
#人工智能数学基础之数理统计原创 2018-11-29 21:03:19 · 657 阅读 · 0 评论 -
人工智能数学基础之线性代数
人工智能之线性代数和数理统计原创 2018-11-29 20:51:05 · 702 阅读 · 0 评论