
机器学习
GhostintheCode
来自大山深处的一名IT小学生
展开
-
ROC曲线,AUC,和P-R曲线的关系
ROC曲线,AUC,和P-R曲线的关系前言:二值分类器的指标很多,比如precision、recall、F1 score、P-R曲线 等发现这些指标或多或少只能反映模型在某一方面的性能。相比而言,ROC曲线则有很多优点,经常作为评估二 值分类器最重要的指标之一。P-R曲线Precision(查准率):P=TP/(TP+FP) 即预测结果中真正的正例的比例。Recall(查全率):R...原创 2020-03-02 16:44:07 · 8103 阅读 · 0 评论 -
能否说出几种降低过拟合和欠拟合风险的方法?
文章目录过拟合数据入手,获得更多数据降低模型复杂度正则化方法集成学习方法欠拟合添加新特征增加模型复杂度减小正则化系数过拟合1、数据入手,获得更多数据2、降低模型复杂度3、正则化方法4、集成学习方法数据入手,获得更多数据使用更多的训练数据是解决过拟合 问题最有效的手段,因为更多的样本能够让模型学习到更多更有效的特征,减小 噪声的影响。当然,直接增加实验数据一般是很困难的,但是可以通过一...原创 2020-03-02 16:42:14 · 1693 阅读 · 0 评论 -
梯度下降和正规方程的区别
梯度下降和正规方程的区别梯度下降正规方程需要选择学习速率,当然如果不设置也会有默认值不需要需要多次迭代一次求导得出当特征数量n大时也能比较好的适用需要计算(XTX)−1(X^TX)^{-1} (XTX)−1 如果特征数量N较大则运算代价大,因为矩阵的逆的计算时间复杂度为O(n3)O(n^3)O(n3) 通常来说当n小于10000时还是可以接受的适用于...原创 2019-06-20 21:35:24 · 4093 阅读 · 0 评论 -
机器学习面试之SVM和LR的区别与联系
机器学习面试之SVM和LR的区别与联系这篇文章属于集百家之长,汇总一下,方便准备面试的人复习,整理一下别的资料,让自己有个理解的过程。对于没有什么统计知识背景的盆友,可能在看这篇文章有点麻烦,不过你可以就当混个眼熟。从线性回归到逻辑回归其实周老师已经写的很明白了(半年前我看这个的时候,边看还边骂,写的什么东西,一点也看不懂,周老师莫怪我,年少不懂事。我的经验总结下来就是查的资料多...原创 2019-07-23 17:29:15 · 675 阅读 · 0 评论 -
机器学习面试之如何解决类别不平衡?
机器学习面试之如何解决类别不平衡?此内容是读西瓜书无意中看到的,觉得很重要,总结一下。原创 2019-07-23 13:51:16 · 317 阅读 · 0 评论