#795 D Max GEQ Sum(单调栈+RMQ)

这篇博客探讨了如何利用前缀和和区间最大值来解决一个算法问题。作者提出了一种方法,通过找到每个元素左侧和右侧第一个大于它的元素,以确保包含该元素的区间内的最大和。文章通过C++代码实现了一个数据结构,用于在线性时间内查找区间最大值和最小值,并展示了如何应用这些技巧来检查是否存在反例。
摘要由CSDN通过智能技术生成

Problem - D - Codeforcesicon-default.png?t=M4ADhttps://codeforces.com/contest/1691/problem/D

思考区间最大值然后求反例的时间复杂度肯定是不行的,所以我们可以思考求a[i]左边第一个大于它的和右边第一个大于它的,这样就可以使l[i]+1-r[i]-1这一段区间内a[i]最大,然后在[i,R[i]-1]这一段找最大前缀和,在[L[I],I-1]找最小前缀和,这样就可以求得包含a[i]的最大和。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <map>
#include <cmath>
#include <cstring>
#include <string>
#define lowbit(x) ((x)&(-x))
using namespace std;
const int MAXN = 1e6 + 5;
using ll = long long ;
using ull = unsigned long long ;
const int INF=0x3f3f3f3f;
const ll NNF = 0x3f3f3f3f3f3f3f3f;


int n;
ll a[MAXN];
ll pre[MAXN];
struct node {
	int l, r;
	ll mx, mn;
} tr[MAXN];
ll R[MAXN];
ll L[MAXN];
ll stk[4 * MAXN];
int top;

void push_up(int q) {
	tr[q].mx = max(tr[q << 1].mx, tr[q << 1 | 1].mx);
	tr[q].mn = min(tr[q << 1].mn, tr[q << 1 | 1].mn);
}

void build(int q, int l, int r) {
	if (l == r)
		return void(tr[q] = node{l, l, pre[l], pre[l]});
	tr[q] = node{l, r, 0, 0};
	int mid = l + r >> 1;
	build(q << 1, l, mid);
	build(q << 1 | 1, mid + 1, r);
	push_up(q);
}

ll query1(int q, int l, int r) {
	if (tr[q].l >= l && tr[q].r <= r)
		return tr[q].mx;
	ll ans = -NNF;
	int mid = tr[q].l + tr[q].r >> 1;
	if (mid >= l)
		ans = query1(q << 1, l, r);
	if (mid < r)
		ans = max(query1(q << 1 | 1, l, r), ans);
	return ans;
}

ll query2(int q, int l, int r) {
	if (tr[q].l >= l && tr[q].r <= r)
		return tr[q].mn;
	ll ans = NNF;
	int mid = tr[q].l + tr[q].r >> 1;
	if (mid >= l)
		ans = query2(q << 1, l, r);
	if (mid < r)
		ans = min(ans, query2(q << 1 | 1, l, r));
	return ans;
}

void solve() {
//	stack<ll> st;
	scanf("%d", &n);
	stk[top = 0] = 0;
	for (int i = 1; i <= n; i++) {
		scanf("%lld", a + i);
		pre[i] = pre[i - 1] + a[i];
//		printf("%lld ", pre[i]);
	}
//	pre[n+1]=pre[n];
//	putchar('\n');
	build(1, 0, n);
	for (int i = 1; i <= n; i++) {
		while (top && a[stk[top]] <= a[i])
			top--;
		L[i] = stk[top];
//		printf("%d ", L[i]);
		stk[++top] = i;
	}
	stk[top = 0] = n + 1;
	for (int i = n; i; i--) {
		while (top && a[stk[top]] <= a[i])
			top--;
		R[i] = stk[top];
//		printf("%d ", R[i]);
		stk[++top] = i;
	}
//	putchar('\n');
//	bool flag = 1;
	for (int i = 1; i <= n; i++) {
		ll tmp1 = query1(1, i, R[i] - 1), tmp2 = query2(1, L[i], i - 1);
//		printf("%lld-%lld(%lld)  ", tmp1, tmp2, a[i]);
		if (tmp1 - tmp2 > a[i])
			return void(printf("NO\n"));
	}
	printf("YES\n");
	return;
}

int main() {
	int t;
	scanf("%d", &t);
	while (t--)
		solve();
	return 0;
}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值