啊啊啊 明明注意到ai<=2.5e6这个条件可现场就是不会处理
然后挂了
结束后俩小时突然反应过来 感觉自己好傻
-----------------------------------------------------------分割线-----------------------------------------------
因为1<=ai<=2.5e6 所以任意两个数的和在1~5e6这个范围区间内,这是这道题的突破口
然后就可以开一个set
当z枚举到i时,此时set已经存取x<=i-1,x<y<=n时 x+y所有的取值
枚举w从i+1到n 直接判断set是否存在z+w即可
因为set的大小最多为5e6,枚举w时要么填补set不存在的数 要么碰到存在的数直接跳出并输出答案
这样可以做到时间复杂度O(min(n^2, max{ai}))
注意w不能等于x或y
#include<bits/stdc++.h>
#define ll long long
#define ull unsigned long long
#define rep(x,a,b) for(int x=(a);x<=(b);x++)
#define per(x,a,b) for(int x=(a);x>=(b);x--)
#define scf(a) scanf("%d",&a)
#define scfll(a) scanf("%lld",&a)
#define scfdb(a) scanf("%lf",&a)
#define ptf(a) printf("%d",a)
#define ptfll(a) printf("%lld",a)
#define ptfdb(x,a) printf("%x.lf",a)
#define ptfsp(a) printf("%d ",a)
#define ptfllsp(a) printf("%lld ",a)
#define ptfdbsp(x,a) printf("%x.lf ",a)
#define pli(a,b) make_pair(a,b)
#define pb push_back
#define el puts("")
#define pi 3.1415926
using namespace std;
const int maxn=2e5+5;
const ll mod=1e9+7;
struct node{
int x,y,sum;
bool operator <(const node &a) const{
return sum<a.sum;
}
};
set<node>s;
int a[maxn];
int main(){
int n;scf(n);
rep(i,1,n) scf(a[i]);
rep(i,1,n){
rep(j,i+1,n){
auto it=s.find((node){0,0,a[i]+a[j]});
if(it!=s.end()&&it->y!=j&&it->y!=i){
puts("YES");
cout<<i<<" "<<j<<" "<<it->x<<" "<<it->y;
return 0;
}
}
rep(j,i+1,n) s.insert((node){i,j,a[i]+a[j]});
}
puts("NO");
}