SWIN-UNET网络复现(高效无bug)

1.下载并解压工程包-Unet

GitHub - bubbliiiing/unet-pytorch: 这是一个unet-pytorch的源码,可以训练自己的模型

2.在代码中做如下修改

nets文件夹下新建文件nets.swin_unet.py

import math
import warnings
warnings.filterwarnings("ignore")
import torch
import torch.nn as nn
import torch.utils.checkpoint as checkpoint
from einops import rearrange
from timm.models.layers import DropPath, to_2tuple, trunc_normal_


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


def window_partition(x, window_size):
    """
    Args:
        x: (B, H, W, C)
        window_size (int): window size

    Returns:
        windows: (num_windows*B, window_size, window_size, C)
    """
    B, H, W, C = x.shape
    x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
    return windows


def window_reverse(windows, window_size, H, W):
    """
    Args:
        windows: (num_windows*B, window_size, window_size, C)
        window_size (int): Window size
        H (int): Height of image
        W (int): Width of image

    Returns:
        x: (B, H, W, C)
    """
    B = int(windows.shape[0] / (H * W / window_size / window_size))
    x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return x


class WindowAttention(nn.Module):
    r""" Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.

    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nH

        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        self.register_buffer("relative_position_index", relative_position_index)

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask=None):
        """
        Args:
            x: input features with shape of (num_windows*B, N, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        B_, N, C = x.shape
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    def extra_repr(self) -> str:
        return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'

    def flops(self, N):
        # calculate flops for 1 window with token length of N
        flops = 0
        # qkv = self.qkv(x)
        flops += N * self.dim * 3 * self.dim
        # attn = (q @ k.transpose(-2, -1))
        flops += self.num_heads * N * (self.dim // self.num_heads) * N
        #  x = (attn @ v)
        flops += self.num_heads * N * N * (self.dim // self.num_heads)
        # x = self.proj(x)
        flops += N * self.dim * self.dim
        return flops


class SwinTransformerBlock(nn.Module):
    r""" Swin Transformer Block.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resulotion.
        num_heads (int): Number of attention heads.
        window_size (int): Window size.
        shift_size (int): Shift size for SW-MSA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        if min(self.input_resolution) <= self.window_size:
            # if window size is larger than input resolution, we don't partition windows
            self.shift_size = 0
            self.window_size = min(self.input_resolution)
        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"

        self.norm1 = norm_layer(dim)
        self.attn = WindowAttention(
            dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
            qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

        if self.shift_size > 0:
            # calculate attention mask for SW-MSA
            H, W = self.input_resolution
            img_mask = torch.zeros((1, H, W, 1))  # 1 H W 1
            h_slices = (slice(0, -self.window_size),
                        slice(-self.window_size, -self.shift_size),
                        slice(-self.shift_size, None))
            w_slices = (slice(0, -self.window_size),
                        slice(-self.window_size, -self.shift_size),
                        slice(-self.shift_size, None))
            cnt = 0
            for h in h_slices:
                for w in w_slices:
                    img_mask[:, h, w, :] = cnt
                    cnt += 1

            mask_windows = window_partition(img_mask, self.window_size)  # nW, window_size, window_size, 1
            mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
            attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
            attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
        else:
            attn_mask = None

        self.register_buffer("attn_mask", attn_mask)

    def forward(self, x):
        H, W = self.input_resolution
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        shortcut = x
        x = self.norm1(x)
        x = x.view(B, H, W, C)

        # cyclic shift
        if self.shift_size > 0:
            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
        else:
            shifted_x = x

        # partition windows
        x_windows = window_partition(shifted_x, self.window_size)  # nW*B, window_size, window_size, C
        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # nW*B, window_size*window_size, C

        # W-MSA/SW-MSA
        attn_windows = self.attn(x_windows, mask=self.attn_mask)  # nW*B, window_size*window_size, C

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
        shifted_x = window_reverse(attn_windows, self.window_size, H, W)  # B H' W' C

        # reverse cyclic shift
        if self.shift_size > 0:
            x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            x = shifted_x
        x = x.view(B, H * W, C)

        # FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x

    def extra_repr(self) -> str:
        return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
               f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"

    def flops(self):
        flops = 0
        H, W = self.input_resolution
        # norm1
        flops += self.dim * H * W
        # W-MSA/SW-MSA
        nW = H * W / self.window_size / self.window_size
        flops += nW * self.attn.flops(self.window_size * self.window_size)
        # mlp
        flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
        # norm2
        flops += self.dim * H * W
        return flops


class PatchMerging(nn.Module):
    r""" Patch Merging Layer.

    Args:
        input_resolution (tuple[int]): Resolution of input feature.
        dim (int): Number of input channels.
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
        super().__init__()
        self.input_resolution = input_resolution
        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
        self.norm = norm_layer(4 * dim)

    def forward(self, x):
        """
        x: B, H*W, C
        """
        H, W = self.input_resolution
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"
        assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."

        x = x.view(B, H, W, C)

        x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 C
        x1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 C
        x2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 C
        x3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 C
        x = torch.cat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*C
        x = x.view(B, -1, 4 * C)  # B H/2*W/2 4*C

        x = self.norm(x)
        x = self.reduction(x)

        return x

    def extra_repr(self) -> str:
        return f"input_resolution={self.input_resolution}, dim={self.dim}"

    def flops(self):
        H, W = self.input_resolution
        flops = H * W * self.dim
        flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
        return flops


class PatchExpand(nn.Module):
    def __init__(self, input_resolution, dim, dim_scale=2, norm_layer=nn.LayerNorm):
        super().__init__()
        self.input_resolution = input_resolution
        self.dim = dim
        self.expand = nn.Linear(dim, 2 * dim, bias=False) if dim_scale == 2 else nn.Identity()
        self.norm = norm_layer(dim // dim_scale)

    def forward(self, x):
        """
        x: B, H*W, C
        """
        H, W = self.input_resolution
        x = self.expand(x)
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        x = x.view(B, H, W, C)
        x = rearrange(x, 'b h w (p1 p2 c)-> b (h p1) (w p2) c', p1=2, p2=2, c=C // 4)
        x = x.view(B, -1, C // 4)
        x = self.norm(x)

        return x


class FinalPatchExpand_X4(nn.Module):
    def __init__(self, input_resolution, dim, dim_scale=4, norm_layer=nn.LayerNorm):
        super().__init__()
        self.input_resolution = input_resolution
        self.dim = dim
        self.dim_scale = dim_scale
        self.expand = nn.Linear(dim, 16 * dim, bias=False)
        self.output_dim = dim
        self.norm = norm_layer(self.output_dim)

    def forward(self, x):
        """
        x: B, H*W, C
        """
        H, W = self.input_resolution
        x = self.expand(x)
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        x = x.view(B, H, W, C)
        x = rearrange(x, 'b h w (p1 p2 c)-> b (h p1) (w p2) c', p1=self.dim_scale, p2=self.dim_scale,
                      c=C // (self.dim_scale ** 2))
        x = x.view(B, -1, self.output_dim)
        x = self.norm(x)

        return x


class BasicLayer(nn.Module):
    """ A basic Swin Transformer layer for one stage.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resolution.
        depth (int): Number of blocks.
        num_heads (int): Number of attention heads.
        window_size (int): Local window size.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(self, dim, input_resolution, depth, num_heads, window_size,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):

        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.depth = depth
        self.use_checkpoint = use_checkpoint

        # build blocks
        self.blocks = nn.ModuleList([
            SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
                                 num_heads=num_heads, window_size=window_size,
                                 shift_size=0 if (i % 2 == 0) else window_size // 2,
                                 mlp_ratio=mlp_ratio,
                                 qkv_bias=qkv_bias, qk_scale=qk_scale,
                                 drop=drop, attn_drop=attn_drop,
                                 drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                                 norm_layer=norm_layer)
            for i in range(depth)])

        # patch merging layer
        if downsample is not None:
            self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
        else:
            self.downsample = None

    def forward(self, x):
        for blk in self.blocks:
            if self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x)
            else:
                x = blk(x)
        if self.downsample is not None:
            x = self.downsample(x)
        return x

    def extra_repr(self) -> str:
        return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"

    def flops(self):
        flops = 0
        for blk in self.blocks:
            flops += blk.flops()
        if self.downsample is not None:
            flops += self.downsample.flops()
        return flops


class BasicLayer_up(nn.Module):
    """ A basic Swin Transformer layer for one stage.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resolution.
        depth (int): Number of blocks.
        num_heads (int): Number of attention heads.
        window_size (int): Local window size.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        upsample (nn.Module | None, optional): upsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(self, dim, input_resolution, depth, num_heads, window_size,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, upsample=None, use_checkpoint=False):

        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.depth = depth
        self.use_checkpoint = use_checkpoint

        # build blocks
        self.blocks = nn.ModuleList([
            SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
                                 num_heads=num_heads, window_size=window_size,
                                 shift_size=0 if (i % 2 == 0) else window_size // 2,
                                 mlp_ratio=mlp_ratio,
                                 qkv_bias=qkv_bias, qk_scale=qk_scale,
                                 drop=drop, attn_drop=attn_drop,
                                 drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                                 norm_layer=norm_layer)
            for i in range(depth)])

        # patch merging layer
        if upsample is not None:
            self.upsample = PatchExpand(input_resolution, dim=dim, dim_scale=2, norm_layer=norm_layer)
        else:
            self.upsample = None

    def forward(self, x):
        for blk in self.blocks:
            if self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x)
            else:
                x = blk(x)
        if self.upsample is not None:
            x = self.upsample(x)
        return x


class PatchEmbed(nn.Module):
    r""" Image to Patch Embedding

    Args:
        img_size (int): Image size.  Default: 224.
        patch_size (int): Patch token size. Default: 4.
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        B, C, H, W = x.shape
        # FIXME look at relaxing size constraints
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x).flatten(2).transpose(1, 2)  # B Ph*Pw C
        if self.norm is not None:
            x = self.norm(x)
        return x

    def flops(self):
        Ho, Wo = self.patches_resolution
        flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
        if self.norm is not None:
            flops += Ho * Wo * self.embed_dim
        return flops


class SwinTransformerSys(nn.Module):
    r""" Swin Transformer
        A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -
          https://arxiv.org/pdf/2103.14030

    Args:
        img_size (int | tuple(int)): Input image size. Default 224
        patch_size (int | tuple(int)): Patch size. Default: 4
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        embed_dim (int): Patch embedding dimension. Default: 96
        depths (tuple(int)): Depth of each Swin Transformer layer.
        num_heads (tuple(int)): Number of attention heads in different layers.
        window_size (int): Window size. Default: 7
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
        drop_rate (float): Dropout rate. Default: 0
        attn_drop_rate (float): Attention dropout rate. Default: 0
        drop_path_rate (float): Stochastic depth rate. Default: 0.1
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
        ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
        patch_norm (bool): If True, add normalization after patch embedding. Default: True
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
    """

    def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000,
                 embed_dim=96, depths=[2, 2, 2, 2], depths_decoder=[1, 2, 2, 2], num_heads=[3, 6, 12, 24],
                 window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
                 drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
                 norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
                 use_checkpoint=False, final_upsample="expand_first", **kwargs):
        super().__init__()

        print(
            "SwinTransformerSys expand initial----depths:{};depths_decoder:{};drop_path_rate:{};num_classes:{}".format(
                depths,
                depths_decoder, drop_path_rate, num_classes))

        self.num_classes = num_classes
        self.num_layers = len(depths)
        self.embed_dim = embed_dim
        self.ape = ape
        self.patch_norm = patch_norm
        self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
        self.num_features_up = int(embed_dim * 2)
        self.mlp_ratio = mlp_ratio
        self.final_upsample = final_upsample

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)
        num_patches = self.patch_embed.num_patches
        patches_resolution = self.patch_embed.patches_resolution
        self.patches_resolution = patches_resolution

        # absolute position embedding
        if self.ape:
            self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
            trunc_normal_(self.absolute_pos_embed, std=.02)

        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule

        # build encoder and bottleneck layers
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer),
                               input_resolution=(patches_resolution[0] // (2 ** i_layer),
                                                 patches_resolution[1] // (2 ** i_layer)),
                               depth=depths[i_layer],
                               num_heads=num_heads[i_layer],
                               window_size=window_size,
                               mlp_ratio=self.mlp_ratio,
                               qkv_bias=qkv_bias, qk_scale=qk_scale,
                               drop=drop_rate, attn_drop=attn_drop_rate,
                               drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
                               norm_layer=norm_layer,
                               downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
                               use_checkpoint=use_checkpoint)
            self.layers.append(layer)

        # build decoder layers
        self.layers_up = nn.ModuleList()
        self.concat_back_dim = nn.ModuleList()
        for i_layer in range(self.num_layers):
            concat_linear = nn.Linear(2 * int(embed_dim * 2 ** (self.num_layers - 1 - i_layer)),
                                      int(embed_dim * 2 ** (
                                              self.num_layers - 1 - i_layer))) if i_layer > 0 else nn.Identity()
            if i_layer == 0:
                layer_up = PatchExpand(
                    input_resolution=(patches_resolution[0] // (2 ** (self.num_layers - 1 - i_layer)),
                                      patches_resolution[1] // (2 ** (self.num_layers - 1 - i_layer))),
                    dim=int(embed_dim * 2 ** (self.num_layers - 1 - i_layer)), dim_scale=2, norm_layer=norm_layer)
            else:
                layer_up = BasicLayer_up(dim=int(embed_dim * 2 ** (self.num_layers - 1 - i_layer)),
                                         input_resolution=(
                                             patches_resolution[0] // (2 ** (self.num_layers - 1 - i_layer)),
                                             patches_resolution[1] // (2 ** (self.num_layers - 1 - i_layer))),
                                         depth=depths[(self.num_layers - 1 - i_layer)],
                                         num_heads=num_heads[(self.num_layers - 1 - i_layer)],
                                         window_size=window_size,
                                         mlp_ratio=self.mlp_ratio,
                                         qkv_bias=qkv_bias, qk_scale=qk_scale,
                                         drop=drop_rate, attn_drop=attn_drop_rate,
                                         drop_path=dpr[sum(depths[:(self.num_layers - 1 - i_layer)]):sum(
                                             depths[:(self.num_layers - 1 - i_layer) + 1])],
                                         norm_layer=norm_layer,
                                         upsample=PatchExpand if (i_layer < self.num_layers - 1) else None,
                                         use_checkpoint=use_checkpoint)
            self.layers_up.append(layer_up)
            self.concat_back_dim.append(concat_linear)

        self.norm = norm_layer(self.num_features)
        self.norm_up = norm_layer(self.embed_dim)

        if self.final_upsample == "expand_first":
            print("---final upsample expand_first---")
            self.up = FinalPatchExpand_X4(input_resolution=(img_size // patch_size, img_size // patch_size),
                                          dim_scale=4, dim=embed_dim)
            self.output = nn.Conv2d(in_channels=embed_dim, out_channels=self.num_classes, kernel_size=1, bias=False)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'absolute_pos_embed'}

    @torch.jit.ignore
    def no_weight_decay_keywords(self):
        return {'relative_position_bias_table'}

    # Encoder and Bottleneck
    def forward_features(self, x):
        x = self.patch_embed(x)
        if self.ape:
            x = x + self.absolute_pos_embed
        x = self.pos_drop(x)
        x_downsample = []

        for layer in self.layers:
            x_downsample.append(x)
            x = layer(x)

        x = self.norm(x)  # B L C

        return x, x_downsample

    # Dencoder and Skip connection
    def forward_up_features(self, x, x_downsample):
        for inx, layer_up in enumerate(self.layers_up):
            if inx == 0:
                x = layer_up(x)
            else:
                x = torch.cat([x, x_downsample[3 - inx]], -1)
                x = self.concat_back_dim[inx](x)
                x = layer_up(x)

        x = self.norm_up(x)  # B L C

        return x

    def up_x4(self, x):
        H, W = self.patches_resolution
        B, L, C = x.shape
        assert L == H * W, "input features has wrong size"

        if self.final_upsample == "expand_first":
            x = self.up(x)
            x = x.view(B, 4 * H, 4 * W, -1)
            x = x.permute(0, 3, 1, 2)  # B,C,H,W
            x = self.output(x)

        return x

    def forward(self, x):
        x, x_downsample = self.forward_features(x)
        x = self.forward_up_features(x, x_downsample)
        x = self.up_x4(x)

        return x

    def flops(self):
        flops = 0
        flops += self.patch_embed.flops()
        for i, layer in enumerate(self.layers):
            flops += layer.flops()
        flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
        flops += self.num_features * self.num_classes
        return flops


def no_weight_decay():
    return {'absolute_pos_embed'}


def no_weight_decay_keywords():
    return {'relative_position_bias_table'}


def _init_weights(m):
    if isinstance(m, nn.Linear):
        trunc_normal_(m.weight, std=.02)
        if isinstance(m, nn.Linear) and m.bias is not None:
            nn.init.constant_(m.bias, 0)
    elif isinstance(m, nn.LayerNorm):
        nn.init.constant_(m.bias, 0)
        nn.init.constant_(m.weight, 1.0)


# ==================================================添加CoordGate模块的定义
class CoordGate(nn.Module):
    def __init__(self, in_channels, reduction=16):
        super(CoordGate, self).__init__()
        self.h_conv = nn.Conv2d(1, 1, kernel_size=7, stride=1, padding=3)
        self.w_conv = nn.Conv2d(1, 1, kernel_size=7, stride=1, padding=3)
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.mlp = nn.Sequential(
            nn.Linear(in_channels, in_channels // reduction),
            nn.ReLU(inplace=True),
            nn.Linear(in_channels // reduction, in_channels)
        )
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        b, c, h, w = x.size()
        # 生成坐标注意力
        y_coord = torch.linspace(-1, 1, h).view(1, 1, h, 1).expand(b, 1, h, w).to(x.device)
        x_coord = torch.linspace(-1, 1, w).view(1, 1, 1, w).expand(b, 1, h, w).to(x.device)
        y_att = self.h_conv(y_coord)
        x_att = self.w_conv(x_coord)
        coord_att = self.sigmoid(y_att + x_att)
        # 通道注意力
        avg_pool = self.avg_pool(x).view(b, c)
        channel_att = self.sigmoid(self.mlp(avg_pool)).view(b, c, 1, 1)
        # 组合空间和通道注意力
        out = x * coord_att * channel_att
        return out

class Swin_Unet(nn.Module):
    def __init__(self, img_size, patch_size, in_channels, num_classes,
                 embed_dim, depths, num_heads,
                 window_size, mlp_ratio, qkv_bias, qk_scale,
                 drop_rate, attn_drop_rate, drop_path_rate):
        super().__init__()

        self.num_classes = num_classes
        self.num_layers = len(depths)
        self.embed_dim = embed_dim
        self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
        self.num_features_up = int(embed_dim * 2)
        self.mlp_ratio = mlp_ratio

        # =============================================CoordGate模块
        self.coord_gates = nn.ModuleList([
            CoordGate(int(embed_dim * 2 ** i))
            for i in range(len(depths))
        ])

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed(
            img_size, patch_size, in_channels, embed_dim,
            norm_layer=nn.LayerNorm)
        patches_resolution = self.patch_embed.patches_resolution
        self.patches_resolution = patches_resolution
        # absolute position embedding,
        self.pos_drop = nn.Dropout(p=drop_rate)
        # stochastic depth
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]

        # build encoderStages and bottleneck layers,每个BasicLayer包含两个Swin Transformer Block和一个下采样
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer),
                               input_resolution=(patches_resolution[0] // (2 ** i_layer),
                                                 patches_resolution[1] // (2 ** i_layer)),
                               depth=depths[i_layer],
                               num_heads=num_heads[i_layer],
                               window_size=window_size,
                               mlp_ratio=self.mlp_ratio,
                               qkv_bias=qkv_bias, qk_scale=qk_scale,
                               drop=drop_rate, attn_drop=attn_drop_rate,
                               drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
                               norm_layer=nn.LayerNorm,
                               downsample=PatchMerging if (i_layer < self.num_layers - 1) else None) # bottleneck没有下采样
            self.layers.append(layer)

        # build decoder layers,解码器每个Stage
        self.layers_up = nn.ModuleList()
        self.concat_back_dim = nn.ModuleList()
        for i_layer in range(self.num_layers):
            concat_linear = nn.Linear(2 * int(embed_dim * 2 ** (self.num_layers - 1 - i_layer)),
                                      int(embed_dim * 2 ** (
                                              self.num_layers - 1 - i_layer))) if i_layer > 0 else nn.Identity()
            if i_layer == 0:
                layer_up = PatchExpand(
                    input_resolution=(patches_resolution[0] // (2 ** (self.num_layers - 1 - i_layer)),
                                      patches_resolution[1] // (2 ** (self.num_layers - 1 - i_layer))),
                    dim=int(embed_dim * 2 ** (self.num_layers - 1 - i_layer)), dim_scale=2, norm_layer=nn.LayerNorm)
            else:
                layer_up = BasicLayer_up(dim=int(embed_dim * 2 ** (self.num_layers - 1 - i_layer)),
                                         input_resolution=(
                                             patches_resolution[0] // (2 ** (self.num_layers - 1 - i_layer)),
                                             patches_resolution[1] // (2 ** (self.num_layers - 1 - i_layer))),
                                         depth=depths[(self.num_layers - 1 - i_layer)],
                                         num_heads=num_heads[(self.num_layers - 1 - i_layer)],
                                         window_size=window_size,
                                         mlp_ratio=self.mlp_ratio,
                                         qkv_bias=qkv_bias, qk_scale=qk_scale,
                                         drop=drop_rate, attn_drop=attn_drop_rate,
                                         drop_path=dpr[sum(depths[:(self.num_layers - 1 - i_layer)]):sum(
                                             depths[:(self.num_layers - 1 - i_layer) + 1])],
                                         norm_layer=nn.LayerNorm,
                                         upsample=PatchExpand if (i_layer < self.num_layers - 1) else None)
            self.layers_up.append(layer_up)
            self.concat_back_dim.append(concat_linear)

        self.norm = nn.LayerNorm(self.num_features)
        self.norm_up = nn.LayerNorm(self.embed_dim)

        self.up = FinalPatchExpand_X4(input_resolution=(img_size // patch_size, img_size // patch_size),
                                      dim_scale=4, dim=embed_dim)
        self.output = nn.Conv2d(in_channels=embed_dim, out_channels=self.num_classes, kernel_size=1, bias=False)

        self.apply(_init_weights)

    # Encoder and Bottleneck
    def forward_features(self, x):
        x = self.patch_embed(x)
        if self.ape:
            x = x + self.absolute_pos_embed
        x = self.pos_drop(x)
        x_down_sample = []

        for layer in self.layers:
            x_down_sample.append(x)
            x = layer(x)

        x = self.norm(x)  # B L C

        return x, x_down_sample

    # Decoder and Skip connection
    def forward_up_features(self, x, x_down_sample):
        for inx, layer_up in enumerate(self.layers_up):
            if inx == 0:
                x = layer_up(x)
            else:
                x = torch.cat([x, x_down_sample[3 - inx]], -1)
                x = self.concat_back_dim[inx](x)
                x = layer_up(x)

        x = self.norm_up(x)  # B L C

        return x

    def up_x4(self, x):
        H, W = self.patches_resolution
        B, L, C = x.shape
        assert L == H * W, "input features has wrong size"

        x = self.up(x)
        x = x.view(B, 4 * H, 4 * W, -1)
        x = x.permute(0, 3, 1, 2)  # B,C,H,W
        x = self.output(x)

        return x

    def forward(self, x):
        x, x_down_sample = self.forward_features(x)
        # =========================================在每个stage后应用CoordGate
        for i, gate in enumerate(self.coord_gates):
            if i < len(x_down_sample):
                # 将特征图从(B, L, C)转换为(B, C, H, W)格式
                h = w = int(math.sqrt(x_down_sample[i].shape[1]))
                feat = x_down_sample[i].transpose(1, 2).view(-1, self.embed_dim * 2 ** i, h, w)
                feat = gate(feat)
                # 转换回原始格式
                x_down_sample[i] = feat.flatten(2).transpose(1, 2)
        x = self.forward_up_features(x, x_down_sample)
        x = self.up_x4(x)
        return x

    def flops(self):
        flops = 0
        flops += self.patch_embed.flops()
        for i, layer in enumerate(self.layers):
            flops += layer.flops()
        flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
        flops += self.num_features * self.num_classes
        return flops

还要修改nets文件夹下unet.py文件,如下

import math
import torch
import torch.nn as nn
from nets.resnet import resnet50
from nets.vgg import VGG16
from nets.swin_unet import Swin_Unet
from torch.hub import load_state_dict_from_url

def swin_unet(pretrained=False, **kwargs):
    model = Swin_Unet(img_size=224, patch_size=4, in_channels=3, num_classes=7,
            embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24],
            window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
            drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, **kwargs)
    if pretrained:
        state_dict = load_state_dict_from_url("https://github.com/SwinTransformer/storage/releases/download/v1.0.8/swin_tiny_patch4_window7_224_22k.pth", model_dir="./model_data")
        model.load_state_dict(state_dict)
    return model

class unetUp(nn.Module):
    def __init__(self, in_size, out_size):
        super(unetUp, self).__init__()
        self.conv1  = nn.Conv2d(in_size, out_size, kernel_size = 3, padding = 1)
        self.conv2  = nn.Conv2d(out_size, out_size, kernel_size = 3, padding = 1)
        self.up     = nn.UpsamplingBilinear2d(scale_factor = 2)
        self.relu   = nn.ReLU(inplace = True)

    def forward(self, inputs1, inputs2):
        outputs = torch.cat([inputs1, self.up(inputs2)], 1)#[2,384,14,14]
        outputs = self.conv1(outputs)
        outputs = self.relu(outputs)
        outputs = self.conv2(outputs)
        outputs = self.relu(outputs)
        return outputs

class unetUp_1(nn.Module):
    def __init__(self, in_size, out_size):
        super(unetUp_1, self).__init__()
        self.conv1  = nn.Conv2d(in_size, out_size, kernel_size = 3, padding = 1)
        self.conv2  = nn.Conv2d(out_size, out_size, kernel_size = 3, padding = 1)
        self.up     = nn.UpsamplingBilinear2d(scale_factor = 2)
        self.relu   = nn.ReLU(inplace = True)

    def forward(self, inputs1, inputs2):
        outputs = torch.cat([inputs1, inputs2], 1)#[2,384,14,14]
        outputs = self.conv1(outputs)
        outputs = self.relu(outputs)
        outputs = self.conv2(outputs)
        outputs = self.relu(outputs)
        return outputs

class Unet(nn.Module):
    def __init__(self, num_classes = 7, pretrained = False, backbone ='vgg'):
        super(Unet, self).__init__()
        if backbone == 'vgg':
            self.vgg    = VGG16(pretrained = pretrained)
            in_filters  = [192, 384, 768, 1024]
        elif backbone == 'resnet50':
            self.resnet = resnet50(pretrained = pretrained)
            in_filters  = [192, 512, 1024, 3072]
        elif backbone == 'swin':
            self.swin   = swin_unet(pretrained = pretrained)
            in_filters  = [224,448,896,768]
        else:
            raise ValueError('Unsupported backbone - `{}`, Use vgg, resnet50.'.format(backbone))
        out_filters = [64, 128, 256, 512]
        #out_filters = [48,96,192,384]
            # upsampling
            # 64,64,512
        self.up_concat4 = unetUp(in_filters[3], out_filters[3])
            # 128,128,256
        self.up_concat3 = unetUp(in_filters[2], out_filters[2])
            # 256,256,128
        self.up_concat2 = unetUp(in_filters[1], out_filters[1])
            # 512,512,64
        self.up_concat1 = unetUp(in_filters[0], out_filters[0])

        if backbone == 'resnet50':
            self.up_conv = nn.Sequential(
                nn.UpsamplingBilinear2d(scale_factor = 2), 
                nn.Conv2d(out_filters[0], out_filters[0], kernel_size = 3, padding = 1),
                nn.ReLU(),
                nn.Conv2d(out_filters[0], out_filters[0], kernel_size = 3, padding = 1),
                nn.ReLU(),
            )
        else:
            self.up_conv = None
        self.final = nn.Conv2d(out_filters[0], num_classes, 1)
        self.backbone = backbone

    def forward(self, inputs):
        if self.backbone == "vgg":
            [feat1, feat2, feat3, feat4, feat5] = self.vgg.forward(inputs)
            up4 = self.up_concat4(feat4, feat5)
            up3 = self.up_concat3(feat3, up4)
            up2 = self.up_concat2(feat2, up3)
            up1 = self.up_concat1(feat1, up2)
        elif self.backbone == "resnet50":
            [feat1, feat2, feat3, feat4, feat5] = self.resnet.forward(inputs)
            up4 = self.up_concat4(feat4, feat5)
            up3 = self.up_concat3(feat3, up4)
            up2 = self.up_concat2(feat2, up3)
            up1 = self.up_concat1(feat1, up2)
        elif self.backbone == "swin": #===================================
            # 通过Swin Transformer提取特征
            x = self.swin.patch_embed(inputs)  # 修正拼写错误 pathch_embed -> patch_embed
            B, L, C = x.shape
            H = W = int(math.sqrt(L))  # 计算特征图的高度和宽度

            # 将特征转换为4D张量以便于后续处理
            feat = x.view(B, H, W, C).permute(0, 3, 1, 2)  # B,C,H,W

            # 依次通过Swin Transformer的各层
            x1 = self.swin.layers[0](x)
            x2 = self.swin.layers[1](x1)
            x3 = self.swin.layers[2](x2)
            x4 = self.swin.layers[3](x3)

            # 将特征转换为4D张量
            B, L, C = x1.shape
            H1 = W1 = int(math.sqrt(L))
            feat1 = x1.view(B, H1, W1, -1).permute(0, 3, 1, 2)

            B, L, C = x2.shape
            H2 = W2 = int(math.sqrt(L))
            feat2 = x2.view(B, H2, W2, -1).permute(0, 3, 1, 2)

            B, L, C = x3.shape
            H3 = W3 = int(math.sqrt(L))
            feat3 = x3.view(B, H3, W3, -1).permute(0, 3, 1, 2)

            B, L, C = x4.shape
            H4 = W4 = int(math.sqrt(L))
            feat4 = x4.view(B, H4, W4, -1).permute(0, 3, 1, 2)
            self.up_concat4 = unetUp_1(1536, 512)
            up4 = self.up_concat4(feat3, feat4)
            up3 = self.up_concat3(feat2, up4)
            up2 = self.up_concat2(feat1, up3)
            up1 = self.up_concat1(feat, up2)  # 假设feat1是最低层的特征

        if self.up_conv != None:
            up1 = self.up_conv(up1)
        final = self.final(up1)        
        return final

    def freeze_backbone(self):
        if self.backbone == "vgg":
            for param in self.vgg.parameters():
                param.requires_grad = False
        elif self.backbone == "resnet50":
            for param in self.resnet.parameters():
                param.requires_grad = False
        elif self.backbone == "swin":
            for param in self.swin.parameters():
                param.requires_grad = False


    def unfreeze_backbone(self):
        if self.backbone == "vgg":
            for param in self.vgg.parameters():
                param.requires_grad = True
        elif self.backbone == "resnet50":
            for param in self.resnet.parameters():
                param.requires_grad = True 
        elif self.backbone == "swin":
            for param in self.swin.parameters():
                param.requires_grad = True 

3.修改输入图像大小

    model_path  = "E:/unet-pytorch-main/swin_tiny_patch4_window7_224.pth"

    #-----------------------------------------------------#

    #   input_shape     输入图片的大小,32的倍数

    #-----------------------------------------------------#

    input_shape = [224, 224]###swin 224*224

注意,所有的地方都要改

4.train.py下需要修改如下:

        #------------------------------------------------------#
        #   根据预训练权重的Key和模型的Key进行加载
        #------------------------------------------------------#
        # 加快模型训练的效率
        print('Loading weights into state dict...')
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        model_dict = model.state_dict()
        pretrained_dict = torch.load(model_path, map_location=device)
        a = {}
        for k, v in pretrained_dict.items():
            try:    
                if np.shape(model_dict[k]) ==  np.shape(v):
                    a[k]=v
            except:
                pass
        model_dict.update(a)
        model.load_state_dict(model_dict)
        print('Finished!')
        #------------------------------------------------------#
        #   显示没有匹配上的Key
        #------------------------------------------------------#

用于替换原先的,解决修改网络参数不匹配的问题

5.nets/unet_training.py文件下所有的Loss类函数的mode参数改为mode="bicubic",避免报linear参数不接受4D张量的错误

6.点击train.py训练即可。

### SwinUNet 模型介绍 SwinUNet 是一种基于 Swin Transformer 的 U-Net 架构,专为医学图像分割设计。此架构融合了卷积神经网络 (CNN) 和变压器的优点,在处理高分辨率图像方面表现出色[^3]。 #### 编码端模块解析 编码器部分由多个阶段组成,每个阶段包含若干个 Swin Transformer Block: 1. **Patch Embedding** 将输入图像划分为不重叠的 patches 并映射到低维向量空间。 2. **Swin Transformer Blocks** - **Window Partition**: 把特征图分成固定大小的窗口以便局部建模。 - **Window Attention Mechanism**: 实现自注意力机制来捕捉窗口内部像素间的关系。 - **Window Reverse**: 反转 window partition 操作恢复原始尺寸。 - **MLP Layer**: 多层感知机用于增强表达能力。 3. **Patch Merging** 减少空间维度的同时增加通道数以适应下一层的需求。 #### 解码端模块概述 解码器通过一系列上采样操作逐步重建图像细节,并与相应层次的编码器输出进行跳跃连接(skip connection),从而保留更多细粒度的信息。 ### 使用指南 为了帮助初学者更轻松地上手 SwinUNet 模型,官方文档提供了详尽的操作手册和实例代码。具体来说: - 数据集准备、模型配置、训练过程及性能评估等方面均有细致入微的帮助说明,极大地方便了使用者理解和实践[^1]。 - 对于希望直接应用预训练权重的情况,`models/pre_trained.pth` 文件中保存了一个经过充分调优并广泛测试过的版本,适用于多种类型的图像去噪任务[^2]。 此外,还有专门针对特定应用场景下的优化建议和技术支持资源可供查阅学习[^4]。 ```python import torch from swin_unet import SwinUnet model = SwinUnet(img_size=224, num_classes=2).cuda() pretrained_dict = torch.load('models/pre_trained.pth') model.load_state_dict(pretrained_dict) print("Model loaded successfully.") ```
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值