子序列问题(动态规划)--PTA

最长公共子序列长度(LCS)

问题描述:求两个字符串的最长公共子序列长度。(子序列不一定是连续的)

分析:设二维数组dp(i, j)是字符str1[i]与str2[j]之前的LCS。给出两个字符串str1和str2,现在假设判断str1[i]和str2[j]两个字符,这样可以分为两种情况:

1.两者相同    

                                                   dp[i][j] = dp[i - 1][j - 1] + 1

2.两者不同

                                       dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])                

代码:

#include<bits/stdc++.h>
using namespace std;
const int M = 110;
int dp[M][M];
int main()
{
    string str1, str2;
    cin >> str1 >> str2;
    memset(dp, 0, sizeof dp);
    for(int i = 0; i < str1.size(); i++)
    {
        for(int j = 0; j < str2.size(); j++)
        {
            if(str1[i] == str2[j])
                dp[i + 1][j + 1] = dp[i][j] + 1;
            else
                dp[i + 1][j + 1] = max(dp[i + 1][j], dp[i][j + 1]);
        }
    }
    cout << dp[str1.size()][str2.size()];
    return 0;
}

单调递增最长子序列

问题描述:设计一个O(n^2)时间的算法,找出由n个数组成的序列的最长单调递增子序列的长度。

分析:开一个一维数组dp。令dp[i]为以v[i]结尾的最大递增子序列。那么当v[i]大于v[j]时有以下状态转移方程:

                                                     dp[i] = max(dp[j] + 1, dp[i])

代码:

#include<iostream>
using namespace std;
const int M = 1100;

int n, v[M], dp[M];
int main()
{
    cin >> n;
    for(int i = 0; i < n; i++)
        cin >> v[i];
    for(int i = 0; i < n; i++)
    {
        dp[i] = 1;
        for(int j = 0; j < i; j++)
        {
            if(v[j] < v[i])
                dp[i] = max(dp[i], dp[j] + 1);
        }
    }
    cout << dp[n - 1];
    return 0;
}

最长有序子序列

问题:基本同上

分析:只要对于dp数组进行排序即可。不过在交时要注意格式。

代码:

#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
const int M = 1100;
int v[M], t, n;

void slove()
{
    cin >> n;
    vector<int> dp(n, 1);
    for(int i = 0; i < n; i++)
        cin >> v[i];
    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < i; j++)
        {
            if(v[j] < v[i])
                dp[i] = max(dp[i], dp[j] + 1);
        }
    }
    sort(dp.begin(), dp.end());
    cout << dp[dp.size() - 1] ;
    return ;
}

int main()
{
    cin >> t;
    while(t--)
    {
        if(t == 0)
            slove();
        else
        {
            slove();
            cout << endl;
            cout << endl;
        }
    }
    return 0;
}

最大连续子序列

问题描述:给定K个整数的序列{ n(1),n(2),…,n(K) },其任意连续子序列可表示为{ n(i),n(i+1),…,n(j)},其中 1≤i≤j≤K。最大连续子序列是所有连续子序列中元素和最大的一个。例如,给定序列{ -2,11,-4,13,-5,-2 },其最大连续子序列为{ 11,-4,13 },最大和为20。 要求编写程序得到最大和,并输出子序列的第一个元素和最后一个元素。

分析:求出前缀和,j从后往前遍历,i从j往前遍历即可。

代码:

#include<iostream>
#include<algorithm>
using namespace std;
const int M = 1e4 + 5;
const int INF = 0x3f3f3f3f;
int t, n, v[M], sum[M];

void slove(int n)
{
    int flag = 0;
    for(int i = 1; i <= n; i++)
    {
        cin >> v[i];
        if(v[i] > 0)
            flag = 1;
        sum[i] = sum[i -1] + v[i];
    }
    if(!flag)
    {
        cout << 0 << " " << v[1] << " " << v[n] << endl;
        return ;
    }
    int l = 0, r = 0, index_l = 0, index_r = 0;
    int max_n = 0 - INF;
    for(int j = n; j > 0; j--)
    {
        for(int i = j - 1; i >= 0; i--)
        {
            if(max_n <= sum[j] - sum[i])
            {
                max_n = sum[j] - sum[i];
                l = v[i + 1], r = v[j];
            }
        }
    }
    cout << max_n << " " << l << " " << r << endl;
    return ;
}

int main()
{
    cin >> t;
    while(t != 0)
    {
        slove(t);
        cin >> t;
    }
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值