文章目录
Flink是什么?
Flink介绍
Apache Flink是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。Flink设计为在所有常见的集群环境中运行,以内存速度和任何规模执行计算。
在这里,我们解释了Flink架构的重要方面。
处理无界和有界数据
任何类型的数据都是作为事件流产生的。信用卡交易,传感器测量,机器日志或网站或移动应用程序上的用户交互,所有这些数据都作为流生成。 数据可以作为无界或有界流处理。
无界流有一个开始但没有定义的结束。它们不会在生成时终止并提供数据。必须持续处理无界流,即必须在摄取事件后立即处理事件。无法等待所有输入数据到达,因为输入是无界的,并且在任何时间点都不会完成。处理无界数据通常要求以特定顺序(例如事件发生的顺序)摄取事件,以便能够推断结果完整性。
有界流具有定义的开始和结束。可以在执行任何计算之前通过摄取所有数据来处理有界流。处理有界流不需要有序摄取,因为可以始终对有界数据集进行排序。有界流的处理也称为批处理。
Apache Flink擅长处理无界和有界数据集。精确控制时间和状态使Flink的运行时能够在无界流上运行任何类型的应用程序。有界流由算法和数据结构内部处理,这些算法和数据结构专门针对固定大小的数据集而设计,从而产生出色的性能。
部署应用程序在任何地方
Apache Flink是一个分布式系统,需要计算资源来执行应用程序。Flink集成了所有常见的集群资源管理器,如Hadoop YARN、Apache Mesos和Kubernetes,但也可以设置为作为独立集群运行。
Flink被设计成能够很好地工作于前面列出的每个资源管理器。这是通过特定于资源管理器的部署模式实现的,这种部署模式允许Flink以其惯用的方式与每个资源管理器交互。
在部署Flink应用程序时,Flink根据应用程序的配置并行性自动识别所需的资源,并从资源管理器请求它们。如果发生故障,Flink将通过请求新的资源来替换失败的容器。提交或控制应用程序的所有通信都是通过REST调用进行的。这简化了Flink在许多环境中的集成。
以任何规模运行应用程序
Flink设计用于在任何规模上运行有状态流应用程序。应用程序被并行化成数千个任务,这些任务分布在一个集群中并发执行。因此,应用程序实际上可以利用无限数量的cpu、主内存、磁盘和网络IO。此外,Flink很容易保持非常大的应用状态。它的异步和增量检查点算法确保了对处理延迟的最小影响,同时保证了精确的一次状态一致性。
利用内存中的性能
有状态Flink应用程序针对本地状态访问进行了优化。任务状态总是在内存中维护,如果状态大小超过可用内存,则在具有访问效率的磁盘数据结构中维护。因此,任务通过访问本地(通常是在内存中)状态来执行所有计算,从而产生非常低的处理延迟。Flink通过定期和异步检查本地状态到持久存储,保证了在发生故障时的精确一次状态一致性。
Flink Demo展示
利用maven导入依赖
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>1.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.11</artifactId>
<version>1.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka-0.11_2.11</artifactId>
<version>1.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-statebackend-rocksdb_2.11</artifactId>
<version>1.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner_2.11</artifactId>
<version>1.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner-blink_2.11</artifactId>
<version>1.10.1</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.38</version>
</dependency>
<dependency>
<groupId>org.apache.bahir</groupId>
<artifactId>flink-connector-redis_2.11</artifactId>
<version>1.0</version>
</dependency>
<!-- scala -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-scala_2.11</artifactId>
<version>1.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-scala_2.11</artifactId>
<version>1.10.1</version>
</dependency>
利用Scala 进行wordcount
代码如下:
object WordCount {
def main(args: Array[String]): Unit = {
// 1、创建流处理的执行环境
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
env.setParallelism(1) //并行度
// 2、source 接受socket 数据流
val inputDataStream: DataStream[String] = env.socketTextStream("192.168.146.222",7777)
// 3、转换操作
val resultDataStream: DataStream[(String, Int)] = inputDataStream
.flatMap(_.split("\\s+"))
.map(x => (x, 1))
.keyBy((0))
.sum(1)
// 4、sink
resultDataStream.print()
env.execute("wordcount")
}
}
虚拟机利用nc 模拟输入流,运行如下:
利用Java进行wordcount
代码如下:
public class WordCount{
public static void main(String[] args) throws Exception {
// 1、定义env执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(3);
// 2、source
DataStreamSource<String> inputDataStream = env.socketTextStream("192.168.146.222", 7777);
// 3、数据转换
SingleOutputStreamOperator<Tuple2<String, Integer>> result = inputDataStream.flatMap(new MyFlatMapper())
.keyBy(0)
.sum(1);
//sink
result.print("wordcount");
env.execute("java word count");
}
public static class MyFlatMapper implements FlatMapFunction<String, Tuple2<String,Integer>> {
@Override
public void flatMap(String s, Collector<Tuple2<String,Integer>> collector) throws Exception {
String[] words = s.split("\\s+");
for (String word : words) {
collector.collect(new Tuple2<String, Integer>(word,1));
}
}
}
}
同样利用nc进行模拟输入流,运行如图所示:
利用Java进行wordcount2
此demo利用批处理wordcount,区别于上一个demo的流处理,批处理采用一次性将数据处理完毕,处理结束该程序就结束了,并不像流处理会一直运行等待数据传入。
代码如下:
public class WordCount2 {
public static void main(String[] args) throws Exception {
// 1、定义env执行环境
// StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// env.setParallelism(3);
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
String filePath="E:\\ideaProjects\\flinkstu\\resource\\words.txt";
DataSource<String> stringDataSource = env.readTextFile(filePath);
AggregateOperator<Tuple2<String, Integer>> result = stringDataSource.flatMap(new WordCount.MyFlatMapper())
.groupBy(0)
.sum(1);
result.print();
// env.execute("java word count1"); 批处理不需要执行此步骤
}
private static class MyFlatMapper implements FlatMapFunction<String, Tuple2<String,Integer>> {
@Override
public void flatMap(String s, Collector<Tuple2<String,Integer>> collector) throws Exception {
String[] words = s.split("\\s+");
for (String word : words) {
collector.collect(new Tuple2<String, Integer>(word,1));
}
}
}
}
运行如图所示:
Source 展示
数据接收
source1_Collect
直接进行数据展示
先创建样例类:
public class SensorReading {
private String id;
private Long timestamp;
private Double temperature;
@Override
public String toString() {
return "SensorReading{" +
"id='" + id + '\'' +
", timestamp=" + timestamp +
", temperature=" + temperature +
'}';
}
public String getId() {
return id;
}
public void setId(String id) {
this.id = id;
}
public Long getTimestamp() {
return timestamp;
}
public void setTimestamp(Long timestamp) {
this.timestamp = timestamp;
}
public Double getTemperature() {
return temperature;
}
public void setTemperature(Double temperature) {
this.temperature = temperature;
}
public SensorReading() {
}
public SensorReading(String id, Long timestamp, Double temperature) {
this.id = id;
this.timestamp = timestamp;
this.temperature = temperature;
}
}
然后调用该样例类编写代码:
public class source1_Collection {
public static void main(String[] args) throws Exception {
// 1、创建flink 环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
List<SensorReading> list=new ArrayList<>();
list.add(new SensorReading("sensor_1",1624853494L,37.5));
list.add(new SensorReading("sensor_3",1624853694L,36.5));
list.add(new SensorReading("sensor_5",1624853794L,38.5));
list.add(new SensorReading("sensor_2",1624853594L,39.5));
list.add(new SensorReading("sensor_7",1624853994L,35.5));
// 2、source
DataStreamSource<SensorReading> dataStreamSource = env.fromCollection(list);
// 3、sink
dataStreamSource.print("sensor");
env.execute("collectionSource");
}
}
运行如图所示:
Source2_File
读取本地文件
先创建本地文件:
编写代码如下:
public class Source2_File {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
String filePath="E:\\ideaProjects\\flinkstu\\resource\\words.txt";
DataStreamSource<String> inputDataStream = env.readTextFile(filePath);
inputDataStream.print("filesource");
env.execute("fileSource");
}
}
运行如图所示:
Source3_Kafka
从kafka的 topic为sensor 中读取数据
编写代码如下:
public class Source3_Kafka {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
Properties prop = new Properties();
prop.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.146.222:9092");
prop.setProperty(ConsumerConfig.GROUP_ID_CONFIG,"sensor_group1");
prop.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer");
prop.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer");
prop.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"latest");
DataStreamSource<String> dataStream = env.addSource(new FlinkKafkaConsumer011<String>("sensor", new SimpleStringSchema(), prop));
dataStream.print("sensor");
env.execute("sensor");
}
}
运行结果如果所示,对topic生产数据后,控制台会同步输出对应数据内容:
Source4_MySource
安装样例类的格式,随机产生数据,并在控制台输出数据
代码如下:
public class Source4_MySource {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStreamSource<Object> dataStram = env.addSource(new MySensorSource());
dataStram.print("mySource");
env.execute("mySourceDemo");
}
private static class MySensorSource implements org.apache.flink.streaming.api.functions.source.SourceFunction<Object> {
boolean flag=true;
@Override
public void run(SourceContext<Object> sourceContext) throws Exception {
while (flag){
sourceContext.collect(
new SensorReading(
"sensor_"+new Random().nextInt(10),
System.currentTimeMillis(),
new Random().nextInt(9)+30.0
)
);
Thread.sleep(1000);
}
}
@Override
public void cancel() {
flag=false;
}
}
}
运行结果如图所示:
Sink 展示
数据传输
Sink1_Kafka
Kafka 的sensor 生产数据时,利用程序将数据消费到 sensorout 中
代码如下:
public class Sink1_Kafka {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
Properties prop = new Properties();
prop.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.146.222:9092");
prop.setProperty(ConsumerConfig.GROUP_ID_CONFIG,"sensor_group1");
prop.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer");
prop.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer");
prop.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"latest");
DataStreamSource<String> dataStream = env.addSource(new FlinkKafkaConsumer011<String>("sensor", new SimpleStringSchema(), prop));
SingleOutputStreamOperator<String> resultDataStream = dataStream.map(line -> {
String[] wordLine = line.split(",");
String sensorReadingStr = new SensorReading(
wordLine[0],
Long.parseLong(wordLine[1]),
Double.parseDouble(wordLine[2])
).toString();
return sensorReadingStr;
});
resultDataStream.addSink(new FlinkKafkaProducer011<String>(
"192.168.146.222:9092",
"sensorout",
new SimpleStringSchema()
));
env.execute("sensor");
}
}
运行如图所示:
对 topic sensor 生成数据时 topic sensorout 会同步消费出该数据
Sink2_Mysql
利用程序将Kafka topic sensor 中生成的数据对应插入到 mysql数据库中的sensor_temp 表中
代码如下:
public class Sink2_Mysql {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
Properties prop = new Properties();
prop.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.146.222:9092");
prop.setProperty(ConsumerConfig.GROUP_ID_CONFIG,"sensor_group1");
prop.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer");
prop.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer");
prop.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"latest");
DataStreamSource<String> dataStream = env.addSource(new FlinkKafkaConsumer011<String>("sensor", new SimpleStringSchema(), prop));
SingleOutputStreamOperator<SensorReading> resultDataStream = dataStream.map(line -> {
String[] wordLine = line.split(",");
SensorReading sensorReading = new SensorReading(
wordLine[0],
Long.parseLong(wordLine[1]),
Double.parseDouble(wordLine[2])
);
return sensorReading;
});
resultDataStream.addSink(new MyJdbcSink());
env.execute("mysqlSinksensor");
}
private static class MyJdbcSink extends RichSinkFunction<SensorReading> {
Connection connection=null;
PreparedStatement insertstmt =null;
PreparedStatement updatestmt =null;
@Override
public void open(Configuration parameters) throws Exception {
connection= DriverManager.getConnection(
"jdbc:mysql://192.168.146.222:3306/flinkdemo?useSSL=false",
"root",
"1"
);
//准备预编译的插入语句
insertstmt = connection.prepareStatement("insert into sensor_temp(id,temp) value(?,?)");
//准备预编译的更新语句
updatestmt = connection.prepareStatement("update sensor_temp set temp=? where id =?");
}
@Override
public void invoke(SensorReading value, Context context) throws Exception {
updatestmt.setDouble(1,value.getTemperature());
updatestmt.setString(2,value.getId());
updatestmt.execute();
if (updatestmt.getUpdateCount()==0)
{
insertstmt.setString(1,value.getId());
insertstmt.setDouble(2,value.getTemperature());
insertstmt.execute();
}
}
@Override
public void close() throws Exception {
connection.close();
}
}
}
//创建mysql 的库以及表
//mysql> create database flinkdemo;
// Query OK, 1 row affected (0.00 sec)
//
// mysql> use flinkdemo;
// Database changed
// mysql> create table sensor_temp(id varchar(32),temp double);
// Query OK, 0 rows affected (0.01 sec)
//
// mysql> desc sensor_temp;
// +-------+-------------+------+-----+---------+-------+
// | Field | Type | Null | Key | Default | Extra |
// +-------+-------------+------+-----+---------+-------+
// | id | varchar(32) | YES | | NULL | |
// | temp | double | YES | | NULL | |
// +-------+-------------+------+-----+---------+-------+
// 2 rows in set (0.01 sec)
运行结果如图所示:
只看最后一条数据,当生产了最后一条的数据后,对sensor_temp 表进行查询,发现已经将数据插入到该表中
Sink3_Redis
将本地文件 sensor.txt中的数据写入redis数据库内
本地文件如图:
代码如下:
public class Sink3_Redis {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
String filePath="E:\\ideaProjects\\flinkstu\\resource\\sensor.txt";
DataStreamSource<String> inputStream = env.readTextFile(filePath);
SingleOutputStreamOperator<SensorReading> dataStream = inputStream.map(line -> {
String[] splits = line.split(",");
return new SensorReading(splits[0],
Long.parseLong(splits[1]),
Double.parseDouble(splits[2]));
});
FlinkJedisPoolConfig config = new FlinkJedisPoolConfig.Builder()
.setHost("192.168.146.222")
.setPort(6379)
.build();
dataStream.addSink(new RedisSink<>(config, new RedisMapper<SensorReading>() {
@Override
public RedisCommandDescription getCommandDescription() {
return new RedisCommandDescription(RedisCommand.HSET,"sensor_temp");
}
@Override
public String getKeyFromData(SensorReading sensorReading) {
return sensorReading.getId();
}
@Override
public String getValueFromData(SensorReading sensorReading) {
return sensorReading.getTemperature().toString();
}
}));
env.execute("redisDemo");
}
}
运行如下所示:
Transform
类型转换
Tranform1
代码如下:
public class Transform1 {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
String filePath = "E:\\ideaProjects\\flinkstu\\resource\\sensor.txt";
DataStreamSource<String> inputStream = env.readTextFile(filePath);
SingleOutputStreamOperator<SensorReading> mapStream = inputStream.map(new MapFunction<String, SensorReading>() {
@Override
public SensorReading map(String s) throws Exception {
String[] split = s.split(",");
return new SensorReading(split[0], Long.parseLong(split[1]), Double.parseDouble(split[1]));
}
});
mapStream.print();
SingleOutputStreamOperator<Integer> mapStream2 = inputStream.map(line -> {
return line.length();
});
mapStream2.print();
env.execute("transform");
}
}
运行结果如下:
Transform2
public class Transform2 {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// String filePath="D:\\Project\\FlinkStu\\resources\\sensor.txt";
// DataStreamSource<String> inputStream = env.readTextFile(filePath);
Properties prop = new Properties();
prop.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.146.222:9092");
prop.setProperty(ConsumerConfig.GROUP_ID_CONFIG,"sensor_group1");
prop.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer");
prop.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer");
prop.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"latest");
DataStreamSource<String> inputStream = env.addSource(new FlinkKafkaConsumer011<String>("sensor", new SimpleStringSchema(), prop));
SingleOutputStreamOperator<SensorReading> mapStream = inputStream.map(new MapFunction<String, SensorReading>() {
@Override
public SensorReading map(String s) throws Exception {
String[] split = s.split(",");
return new SensorReading(split[0], Long.parseLong(split[1]), Double.parseDouble(split[2]));
}
});
KeyedStream<SensorReading, Tuple> keyByStream = mapStream.keyBy("id");
SingleOutputStreamOperator<SensorReading> resultStream =
// keyByStream.max("temperature"); //只返回原值
// keyByStream.min("temperature");
// keyByStream.maxBy("temperature"); //返回一整条信息,不只是单个值,而是值所在的整个信息
keyByStream.minBy("temperature");
resultStream.print();
SingleOutputStreamOperator<SensorReading> reduceStream1 =
keyByStream.reduce(new ReduceFunction<SensorReading>() {
@Override
public SensorReading reduce(SensorReading sensorReading, SensorReading t1) throws Exception {
return new SensorReading(sensorReading.getId(),
sensorReading.getTimestamp(),
Math.min(t1.getTemperature(), sensorReading.getTemperature()));
}
});
// 另一种写法
SingleOutputStreamOperator<SensorReading> reduceStream2 = keyByStream.reduce((curSensorReading, newSensorReading) -> {
return new SensorReading(curSensorReading.getId(),
curSensorReading.getTimestamp(),
Math.min(newSensorReading.getTemperature(), curSensorReading.getTemperature()));
});
env.execute("transform2");
}
}
运行如下所示:
Transform3
public class Transform3 {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// String filePath="D:\\Project\\FlinkStu\\resources\\sensor.txt";
// DataStreamSource<String> inputStream = env.readTextFile(filePath);
Properties prop = new Properties();
prop.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.146.222:9092");
prop.setProperty(ConsumerConfig.GROUP_ID_CONFIG,"sensor_group1");
prop.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer");
prop.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer");
prop.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"latest");
DataStreamSource<String> inputStream = env.addSource(new FlinkKafkaConsumer011<String>("sensor", new SimpleStringSchema(), prop));
SingleOutputStreamOperator<SensorReading> mapStream = inputStream.map(new MapFunction<String, SensorReading>() {
@Override
public SensorReading map(String s) throws Exception {
String[] split = s.split(",");
return new SensorReading(split[0], Long.parseLong(split[1]), Double.parseDouble(split[2]));
}
});
SplitStream<SensorReading> splitStream = mapStream.split(new OutputSelector<SensorReading>() {
@Override
public Iterable<String> select(SensorReading sensorReading) {
if (sensorReading.getTemperature() > 38.0) {
return Collections.singletonList("high");
} else if(sensorReading.getTemperature()<36.0){
return Collections.singletonList("low");
} else {
return Collections.singletonList("normal");
}
}
});
DataStream<SensorReading> high = splitStream.select("high");
DataStream<SensorReading> low = splitStream.select("low");
DataStream<SensorReading> normal = splitStream.select("normal");
high.print("high");
low.print("low");
normal.print("normal");
//合流 union 类型必须一致,否则无法合并
DataStream<SensorReading> unionDataStream = high.union(low, normal);
unionDataStream.print("union");
//connect 合流 合并在两个流,是不同的类型
SingleOutputStreamOperator<Tuple2<String, Double>> warningDataStream = high.map(new MapFunction<SensorReading, Tuple2<String, Double>>() {
@Override
public Tuple2<String, Double> map(SensorReading sensorReading) throws Exception {
return new Tuple2<>(sensorReading.getId(), sensorReading.getTemperature());
}
});
ConnectedStreams<Tuple2<String, Double>, SensorReading> connectStream = warningDataStream.connect(normal);
SingleOutputStreamOperator<Object> resultStream = connectStream.map(new CoMapFunction<Tuple2<String, Double>, SensorReading, Object>() {
@Override
public Object map1(Tuple2<String, Double> stringDoubleTuple2) throws Exception {
return new Tuple3<>(stringDoubleTuple2.f0, stringDoubleTuple2.f1, "发烧了");
}
@Override
public Object map2(SensorReading sensorReading) throws Exception {
return new Tuple2<>(sensorReading.getId(), "健康,没有发烧");
}
});
resultStream.print("connect");
env.execute("transform3");
}
private static class MyRichMapFunction extends RichMapFunction<SensorReading,Tuple2<String,Integer>>{
@Override
public Tuple2<String, Integer> map(SensorReading sensorReading) throws Exception {
return null;
}
}
}