给你一个n个结点,n-1条边的图,其实就是一个生成树,然后用k中颜色给结点涂色,然后将每种颜色的结点连起来,得到一个边集,用k中颜色涂色得到k个边集,求边集交的最大值。
我们可以这样想,如果一条边是边集中的边,那么这条边左边必须有大于等于k个结点,右边也必须有大于等于k个结点,这样这条边就一定是边集中的边了。为什么呢,因为,我们可以给这条边的左右任意k个结点图k种不同的颜色,那么这k种颜色种的任何一种颜色连接结点所形成的边就一定会包含这条边。
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
const int maxn = 200000 + 7;
vector<int>g[maxn];
int sz[maxn];
void dfs(int x, int fa)
{
sz[x] = 1;
for(int i = 0; i < g[x].size(); i++) {
int y = g[x][i];
if(y == fa) continue;
dfs(y, x);
sz[x] += sz[y];
}
}
int main()
{
int t, n, k, u, v;
scanf("%d", &t);
while(t--) {
memset(g, 0, sizeof(g));
memset(sz, 0, sizeof(sz));
scanf("%d %d", &n, &k);
for(int i = 0; i < n-1; i++) {
scanf("%d %d",&u, &v);
g[u].push_back(v);
g[v].push_back(u);
}
int ans = 0;
dfs(1, 0);
for(int i = 1; i <= n; i++) {
if(sz[i] >= k && n - sz[i] >= k) ans++;
}
printf("%d\n", ans);
}
return 0;
}