A1130
Description:
给出一个表达式树,求出带括号的表达式;注意最外层没有括号
思路:
-
中序遍历树,每次递归加一对括号;
-
暂不考虑表达式是否有效,对于树结构来说,递归的子树只有四种可能:叶子节点、左空右不空、右空左不空、左右均不空,其中是叶子节点的情况不应再添加括号,其余三种情况可以加括号;
-
这样整个表达式最外层仍有一对括号,将排除了首尾字符的字串输出即可;
-
倘若没有,则证明其首次遍历便是叶子节点,此时不用求字串,直接输出该字符,样例三就是在考察整棵树只有一个节点的情况,可以简单给出一个测试样例:
1
1 -1 -1 //输出应为一行 1
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<string.h>
#include<algorithm>
#include<map>
#include<vector>
#include<queue>
using namespace std;
struct node{
string data;
int lchild, rchild;
}node[25];
int n;
string ans = "";
void inOrder(int n){
if(node[n].lchild == -1 && node[n].rchild == -1){
ans+=node[n].data;
return ;
}
ans+="(";
if(node[n].lchild!=-1) inOrder(node[n].lchild);
ans+=node[n].data;
if(node[n].rchild!=-1) inOrder(node[n].rchild);
ans+=")";
}
int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("1.txt", "r", stdin);
#endif // ONLINE_JUDGE
scanf("%d", &n);
int root = (1+n)*n/2;
for(int i = 1; i <= n; i++){
cin>>node[i].data>>node[i].lchild>>node[i].rchild;
if(node[i].lchild!=-1)root -= node[i].lchild;
if(node[i].rchild!=-1)root -= node[i].rchild;
}
inOrder(root);
if(ans.size() < 3) printf("%s\n", ans.c_str());
else printf("%s\n", ans.substr(1, ans.size()-2).c_str());
return 0;
}