在学习分割网络的时候用自己搭建的UNet进行训练时出现如下报错:
RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the same
一般来说这个报错说明输入和模型参数并不都在GPU里,一般来说就是要么是模型初始化有问题,要么是训练时输入的数据有问题,检查相关处的代码:
model = UNet(3, 1)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
def train_one_epoch(model, train_dataloader, optimizer, loss_fn):
model.train()
train_loss = 0.0
device = next(model.parameters()).device
for X, y in train_dataloader:
optimizer.zero_grad()
X, y = X.to(device), y.to(device)
y_hat = model(X)
loss = loss_fn(y_hat.squeeze(), y.long())
loss.backward()
optimizer.step()
train_loss += loss.item()
return train_loss / len(train_dataloader)
可以看到理论上模型是成功的被初始化了,并且输入数据在输入之前也做了和模型设备同步的操作,接下来分别将两者所处设备打印出来看看: