错误记录:Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the same

在学习分割网络的时候用自己搭建的UNet进行训练时出现如下报错:

RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the same

 一般来说这个报错说明输入和模型参数并不都在GPU里,一般来说就是要么是模型初始化有问题,要么是训练时输入的数据有问题,检查相关处的代码:

model = UNet(3, 1)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
def train_one_epoch(model, train_dataloader, optimizer, loss_fn):
    model.train()
    train_loss = 0.0
    device = next(model.parameters()).device
    for X, y in train_dataloader:
        optimizer.zero_grad()
        X, y = X.to(device), y.to(device)
        y_hat = model(X)
        loss = loss_fn(y_hat.squeeze(), y.long())
        loss.backward()
        optimizer.step()
        train_loss += loss.item()
    return train_loss / len(train_dataloader)

可以看到理论上模型是成功的被初始化了,并且输入数据在输入之前也做了和模型设备同步的操作,接下来分别将两者所处设备打印出来看看:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值