机器学习教程
Walter_Silva
这个作者很懒,什么都没留下…
展开
-
10.项目实战-交易数据异常检测
https://www.bilibili.com/video/av29439387项目背景:信贷数据,是否是一笔正常、合理的贷款方案:本case采用LR来作检测1、样本不均衡解决方案:主要有过采样、下采样代码示例(下采样):number_records_fraud = len(data[data.Class==1])fraud_indeces = np.array(dat...原创 2018-09-17 17:28:35 · 579 阅读 · 0 评论 -
三大相关性检验的介绍和选择
https://blog.csdn.net/sinat_24143931/article/details/78798630根据这篇文章的介绍可以知道:1、person correlation coefficient(皮尔森相关性系数)就是两个变量(X, Y)的皮尔森相关性系数(ρX,Y)等于它们之间的协方差cov(X,Y)除以它们各自标准差的乘积(σX, σY)。它要求数据是连续数...原创 2018-11-13 10:26:32 · 21332 阅读 · 0 评论 -
CNN卷积神经网络
1、MLP和CNN的区别MLP丧失了二维图像信息,必须转成向量2、将全连接层转换为局部连接层stride和填充:stride步长,对于超出范围的区域,可以删除或者填充默认值,根据需要选择(pandding分别对应valid和same)3、卷积层的维度公式:卷积层中的参数数量卷积层中的参数数量取决于 filters、kernel_size 和 input_shap...原创 2018-11-04 16:59:48 · 634 阅读 · 0 评论 -
word2vec的学习资料
一个全面的了解 https://blog.csdn.net/itplus/article/details/37969519和Xin Rong 的论文:『word2vec Parameter Learning Explained』源码解析 https://schwimmer.github.io/2018/03/17/NLP/Word2vec-C%E4%BB%A3%E7%A0%81/源码地...原创 2018-11-01 19:35:33 · 535 阅读 · 0 评论 -
神经网络训练中的技巧
一、防止过拟合1、早期停止2、正则化3、Dropout 二、局部最低点和梯度消失的问题梯度值过小的话每次迭代得就会很慢,甚至不变,找不到最优点下面是一些解决方法1、改变激活函数如从sigmoid改为双曲正切函数或者relu2、批次和随机梯度下降3、学习率衰退4、随机重新开始5、动量 三、其他...原创 2018-10-30 23:00:30 · 280 阅读 · 0 评论 -
数据可视化之seaborn_3
https://www.bilibili.com/video/av29438608/?p=11一 facetgrid展示数据集中的子集二 热力图:数据趋势变化用颜色表示出来原创 2018-10-21 14:19:06 · 204 阅读 · 0 评论 -
数据可视化之seaborn_2
https://www.bilibili.com/video/av29438608/?p=10一 单变量1 直方图2 散点图3 回归分析图二 多变量分析1 类别变量三 盒图 四 琴图五 两张图的叠加五 条形图六 点图七 多层分类图...原创 2018-10-21 13:18:30 · 253 阅读 · 0 评论 -
特征选择的几个不错的网址
http://dataunion.org/14072.htmlhttp://sklearn.apachecn.org/cn/0.19.0/modules/feature_selection.html原创 2018-10-25 18:34:55 · 433 阅读 · 0 评论 -
数据可视化之seaborn_1
https://www.bilibili.com/video/av29438608?p=2seanborn是在matplotlib基础上封装了一层,应用了大量的模版,让我们很容易画出比较美观的图1 主题风格设置2 调色板 ...原创 2018-10-21 12:30:37 · 265 阅读 · 0 评论 -
数据可视化之matplotlib
https://www.bilibili.com/video/av29438238/?p=4plt.plot()plt.xtrick(rotation=45)plt.xlabel()/plt.ylabel()fig=plt.figure(figsize=(3,3))fig.add_subplot(4,1,(1/2/3/4))labelplt.legend(loc='be...原创 2018-10-20 10:34:41 · 316 阅读 · 0 评论 -
强化学习的课程网站记录
经典读物:Reinforcement Learning: An Introductionhttps://s3-us-west-1.amazonaws.com/udacity-dlnfd/suttonbookdraft2018jan1.pdf 伯克利 AI 课程:http://ai.berkeley.edu/lecture_videos.html David Silver 主讲的强化学习课程:h...原创 2018-10-10 11:12:17 · 516 阅读 · 0 评论 -
Q learning参数的补充说明
1、epsilon greedy 算法Q: 如何理解 greed-epsilon 方法/如何设置 epsilon/如何理解 exploration & exploitation 权衡?A: (1) 我们的小车一开始接触到的 state 很少,并且如果小车按照已经学到的 qtable 执行,那么小车很有可能出错或者绕圈圈。同时我们希望小车一开始能随机的走一走,接触到更多的 state。...原创 2018-10-09 19:48:57 · 3048 阅读 · 0 评论 -
强化学习之时间差分方法
TD 预测:TD(0)虽然蒙特卡洛 (MC) 预测方法必须等到阶段结束时才能更新值函数估值,但是时间差分 (TD) 方法在每个时间步之后都会更新值函数。 对于任何固定策略,一步 TD(或 TD(0))保证会收敛于真状态值函数,只要步长参数 \alphaα 足够小。 在实践中,TD 预测的收敛速度比 MC 预测得要快。TD 预测:动作值-(在此部分,我们讨论了估算动作值的 TD 预...原创 2018-09-29 20:46:46 · 1233 阅读 · 0 评论 -
24.Xgboost专题
https://www.bilibili.com/video/av29442085新增个调参的链接:https://www.2cto.com/kf/201607/528771.html作为实际应用和面试中最喜欢问的一个算法 残差:当前真实值和预测值之差此处的gain可以类比cart树的基尼系数 Learning_rat...原创 2018-09-19 21:28:28 · 191 阅读 · 0 评论 -
模型堆叠(Stacking)和模型融合的原理与实现以及一个库heamy的介绍
最近想用下stacking,搜了很多,现在把所学到的记录下比较好的一个资料是:英文版:https://mlwave.com/kaggle-ensembling-guide/翻译版:https://blog.csdn.net/a358463121/article/details/53054686之前乱搜一通,发现stack和blend傻傻分不清楚,后来才知道很多人stack和blen...原创 2018-11-22 16:42:41 · 7454 阅读 · 1 评论