new
在new ThreadLocal的时候,采用了斐波那锲散列法生成对应的hash使得hash值分布的更加平均
private static int nextHashCode() {
return nextHashCode.getAndAdd(HASH_INCREMENT);
}
set
public void set(T value) {
//从本线程拿到ThreadLocalMap
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null) {
map.set(this, value);
} else {
createMap(t, value);
}
}
private void set(ThreadLocal<?> key, Object value) {
// We don't use a fast path as with get() because it is at
// least as common to use set() to create new entries as
// it is to replace existing ones, in which case, a fast
// path would fail more often than not.
Entry[] tab = table;
int len = tab.length;
//算key值
int i = key.threadLocalHashCode & (len-1);
//从前往后找,直到找到合适的插入
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
ThreadLocal<?> k = e.get();
//如果之前已经设置了key值,那么直接修改
if (k == key) {
e.value = value;
return;
}
//如果k已经被回收,因为为弱引用(看手写笔记)
//注意,有可能在后面还有k == key的情况,要在replaceStaleEntry中判断
if (k == null) {
//替换这个key,
replaceStaleEntry(key, value, i);
return;
}
}
//说明找到了为null的,插入
tab[i] = new Entry(key, value);
int sz = ++size;
//先清理一下tab,看是否要扩容,如果大于了阀值(注意一般超过tab的3/4就要扩容,所以插入的时候是不会遇到满表的情况)
//如果清理返回为true,说明清理了一些槽,不需要扩容
if (!cleanSomeSlots(i, sz) && sz >= threshold)
//扩容
rehash();
}
replaceStaleEntry,探测式清理
//入参为待插入的key,待插入的value,staleSlot这个要替换的槽
private void replaceStaleEntry(ThreadLocal<?> key, Object value,
int staleSlot) {
Entry[] tab = table;
int len = tab.length;
Entry e;
// Back up to check for prior stale entry in current run.
// We clean out whole runs at a time to avoid continual
// incremental rehashing due to garbage collector freeing
// up refs in bunches (i.e., whenever the collector runs).
//先看看在这个槽之前有没有已经被垃圾回收过的,用slotToExpunge记录一下离前面最远的(不为null)且被垃圾回收过的元素。
int slotToExpunge = staleSlot;
for (int i = prevIndex(staleSlot, len);
(e = tab[i]) != null;
i = prevIndex(i, len))
if (e.get() == null)
slotToExpunge = i;
// Find either the key or trailing null slot of run, whichever
// occurs first
//如果一直到为null的槽当中有key和待插入的key一样将其移位到这个槽
for (int i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {
ThreadLocal<?> k = e.get();
// If we find key, then we need to swap it
// with the stale entry to maintain hash table order.
// The newly stale slot, or any other stale slot
// encountered above it, can then be sent to expungeStaleEntry
// to remove or rehash all of the other entries in run.
//如果后面找到了key,将其移动到这个要替换的槽(为null)上
if (k == key) {
e.value = value;
tab[i] = tab[staleSlot];
tab[staleSlot] = e;
// Start expunge at preceding stale entry if it exists
//如果前面也没有发现要清理的槽,就从当前的槽开始清理
if (slotToExpunge == staleSlot)
slotToExpunge = i;
//清理槽,包括探测式清理
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
return;
}
// If we didn't find stale entry on backward scan, the
// first stale entry seen while scanning for key is the
// first still present in the run.
if (k == null && slotToExpunge == staleSlot)
slotToExpunge = i;
}
// If key not found, put new entry in stale slot
tab[staleSlot].value = null;
tab[staleSlot] = new Entry(key, value);
// If there are any other stale entries in run, expunge them
if (slotToExpunge != staleSlot)
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
}
expungeStaleEntry
从这个槽之后到为null的槽为止清除掉被垃圾回收的槽
private int expungeStaleEntry(int staleSlot) {
Entry[] tab = table;
int len = tab.length;
// expunge entry at staleSlot
tab[staleSlot].value = null;
tab[staleSlot] = null;
size--;
// Rehash until we encounter null
Entry e;
int i;
for (i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {
ThreadLocal<?> k = e.get();
if (k == null) {
e.value = null;
tab[i] = null;
size--;
} else {
//如果不为null,说明还没有被回收,还存在引用
//此时判断一下这个key是本来就在这个槽上还是因为原来槽上有东西被移位了的,如果被移位了,再次重新计算一下槽,将其放到离key计算的槽最近的槽上去。
int h = k.threadLocalHashCode & (len - 1);
if (h != i) {
tab[i] = null;
// Unlike Knuth 6.4 Algorithm R, we must scan until
// null because multiple entries could have been stale.
while (tab[h] != null)
h = nextIndex(h, len);
tab[h] = e;
}
}
}
//返回的就是为null的槽的编号
return i;
}
cleanSomeSlots
//入参为null值的槽,以及tab的长度
//试探的扫描一些单元格,寻找过期 元素,也就是被垃圾回收的元素。当添加新元素或删除另一个过时元素时,将调 用此函数。它执行对数扫描次数,作为不扫描(快速但保留垃圾)和与元素数量 成比例的扫描次数之间的平衡,这将找到所有垃圾,但会导致一些插入花费 O(n) 时间。
private boolean cleanSomeSlots(int i, int n) {
boolean removed = false;
Entry[] tab = table;
int len = tab.length;
do {
i = nextIndex(i, len);
Entry e = tab[i];
if (e != null && e.get() == null) {
n = len;
removed = true;
i = expungeStaleEntry(i);
}
} while ( (n >>>= 1) != 0);
return removed;
}
rehash()
扩容
private void rehash() {
//先全盘清理一下
expungeStaleEntries();
//超过了tab的3/4就要扩容
// Use lower threshold for doubling to avoid hysteresis
if (size >= threshold - threshold / 4)
resize();
}
//全盘扫描清除
private void expungeStaleEntries() {
Entry[] tab = table;
int len = tab.length;
for (int j = 0; j < len; j++) {
Entry e = tab[j];
if (e != null && e.get() == null)
expungeStaleEntry(j);
}
}
resize
private void resize() {
Entry[] oldTab = table;
int oldLen = oldTab.length;
//扩容为原来的两倍
int newLen = oldLen * 2;
Entry[] newTab = new Entry[newLen];
int count = 0;
//全部重新计算放到哪个槽里
for (Entry e : oldTab) {
if (e != null) {
ThreadLocal<?> k = e.get();
if (k == null) {
e.value = null; // Help the GC
} else {
int h = k.threadLocalHashCode & (newLen - 1);
while (newTab[h] != null)
h = nextIndex(h, newLen);
newTab[h] = e;
count++;
}
}
}
setThreshold(newLen);
size = count;
table = newTab;
}
get
threadLocal.get();
public T get() {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null) {
//取值
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null) {
@SuppressWarnings("unchecked")
T result = (T)e.value;
return result;
}
}
//如果没有map,说明还没有初始化
return setInitialValue();
}
map.getEntry(this);
private Entry getEntry(ThreadLocal<?> key) {
int i = key.threadLocalHashCode & (table.length - 1);
Entry e = table[i];
if (e != null && e.get() == key)
return e;
else
//如果e.get()!=key说明要在表的这个槽后续找找
return getEntryAfterMiss(key, i, e);
}
getEntryAfterMiss
private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
Entry[] tab = table;
int len = tab.length;
while (e != null) {
ThreadLocal<?> k = e.get();
//如果找到了直接返回
if (k == key)
return e;
//碰到了有被垃圾回收的槽,但是value还没有被垃圾回收,就采用探测式清理。
if (k == null)
expungeStaleEntry(i);
else
i = nextIndex(i, len);
e = tab[i];
}
//如果从hash值算的那个槽往后找到null的槽的时候还是没有找到,那么就说明没有
return null;
}