寻找起伏度最佳窗口、使用arcpy求取地形起伏度的最佳统计单元

1、引言

原文地址链接:https://blog.csdn.net/haichao062/article/details/38318525

地形起伏度相关的研究很多,而地形起伏度数据,需要从DEM中提取。查了下文献,有可靠依据的是“均值变点法”。均值变点法是一种对非线性数据进行处理的数量统计方法,该方法对恰有一个变点的检验最为有效。推荐详细读下2008年发表在《兰州大学学报》的《新​疆​地​势​起​伏​度​的​分​析​研​究》。顺便提一下,我首先找到的是发表在《地理科学》2012年01月,第32卷第1期的《基于变点分析法提取地势起伏度》这篇文章,也使用的这种方法。

2、技术流程

2.1 计算不同格网大小的地形起伏度

使用arcgis的邻域分析功能,依次计算2*2,3*3. ...... 45*45 格网大小的平均起伏度

import arcpy  
import os  
from arcpy import sa  
  
"""DEM路径"""  
DEM=ur'D:\BaihcWorkSpace\checkDEM\ASTGTM2_N36E114.tif'  
  
"""输出文件夹路径"""  
outputPath=ur'D:\BaihcWorkSpace\checkDEM'  
  
'''''邻域计算'''  
def BlockStatistics(DEM,nbr,statistics_type):  
    outBlockStat = sa.BlockStatistics(DEM,nbr,statistics_type)  
    return outBlockStat  
  
'''''计算制定格网的地形起伏度'''  
def calc_gridRA(gridLength,DEM,outputFolder=None):  
    nbr=sa.NbrRectangle(gridLength,gridLength,'CELL') #邻域分析的窗口大小  
    rasterMax=BlockStatistics(DEM,nbr,'MAXIMUM')  
    rasterMin=BlockStatistics(DEM,nbr,'MINIMUM')  
    RA=rasterMax-rasterMin  
      
    if outputFolder:  
        output=os.path.join(outputPath,ur'RA_%s'%(gridLength))  
        RA.save(output)  
    return RA.mean  
  
RAList=[]  
  
  
for i in range(2,45):  
    RAMean=calc_gridRA(i,DEM)  
    RAList.append(RAMean)  

2.2 使用均值变点法寻找拐点

"numrange"为2*2,3*3....格网对应的平均起伏度。 
gridLength 为 DEM数据的分辨率。 

import numpy  
import math  
  
class calcReliefAmplitude():  
    def __init__(self,numrange,gridLength ):  
        self.numrange=numrange  
        self.len=len(self.numrange)  
        self.gridLength=gridLength  
        self.bestWindow=self.calcBestWindow()  
    def _calcVar(self):  
        return numpy.var(self.numrange)*self.len  
      
    def calcBestWindow(self):  
        meanRAList=[math.log(a*10000/math.pow((self.griLength*(i+2)),2)) for i,a in enumerate(self.numrange)]  
        S=[]  
        for j in range(2,len(meanRAList)+1):  
            s1=numpy.var(meanRAList[:j-1])*(j-1)   
            s2=numpy.var(meanRAList[j-1:])*(len(meanRAList)-j+1)  
            S.append( s1+s2)  
        bestWindow= S.index( min(S) )+1+2  
        return bestWindow  

2.3 求得并输出最佳统计单元下的起伏度数据

DEMbestWindow= calcReliefAmplitude(rasterList,gridLength).bestWindow  
  
calc_gridRA(DEMbestWindow,DEM,outputPath) 

完整代码如下,安装过arcgis10.2的即可使用

import arcpy  
from arcpy import sa  
import os  
import numpy    
import math    
    
class calcReliefAmplitude():    
    def __init__(self,numrange,gridLength ):    
        self.numrange=numrange    
        self.len=len(self.numrange)    
        self.gridLength=gridLength    
    def _calcVar(self):    
        return numpy.var(self.numrange)*self.len    
        
    def calcBestWindow(self):    
        meanRAList=[math.log(a/math.pow((self.gridLength*(i+2)),2)) for i,a in enumerate(self.numrange)]    
        S=[]         
        for j in range(2,len(meanRAList)+1):    
            s1=numpy.var(meanRAList[:j-1])*(j-1)     
            s2=numpy.var(meanRAList[j-1:])*(len(meanRAList)-j+1)    
            S.append( s1+s2)  
              
        bestWindow= S.index( min(S) )+1+2    
          
        return [bestWindow,math.pow((bestWindow*self.gridLength),2)]    
  
  
def BlockStatistics(block,nbr,statistics_type):  
    outBlockStat = sa.BlockStatistics(block,nbr,statistics_type)  
    return outBlockStat  
  
  
def get_qfdRast(i):  
    nbr=sa.NbrRectangle(i,i,'CELL')          
    rasterMax=BlockStatistics(block,nbr,'MAXIMUM')  
    rasterMin=BlockStatistics(block,nbr,'MINIMUM')  
    qfd=rasterMax-rasterMin  
    return qfd  
  
  
  
  
def getRasterList():  
    arcpy.SetProgressor("step", "process...",0, 50, 1)  
    numrange=[]  
    rasterList=[]  
    for i in range(2,50):  
        arcpy.SetProgressorLabel("%s/%s"%((i,50)))   
        arcpy.SetProgressorPosition()  
        qfd=get_qfdRast(i)  
        if qfdparams=='mean':  
            qfdValue=qfd.mean  
        if qfdparams=='maximum':  
            qfdValue=qfd.maximum  
        numrange.append(qfdValue)    
        rasterList.append('dem_%s,%s'%(i, qfdValue))  
        arcpy.AddMessage('dem_%s,%s'%(i, qfdValue))  
    arcpy.ResetProgressor()  
    return numrange,rasterList  
  
  
if __name__ == '__main__':  
    """DEM路径"""  
    global block ,DEM_Length,qfdparams  
    block=arcpy.GetParameterAsText(0)  
#    block=ur'D:\work2014\起伏度\SX_DEM\dem'  
      
    """DEM路径"""  
    outputPath=arcpy.GetParameterAsText(1)  
#    outputPath=ur'D:\work2014\起伏度\New Folder'  
    DEM_Length=float(arcpy.GetParameterAsText(2))  
#    DEM_Length=30   #DEM的精度,即格网大小,单位m  
    qfdparams=arcpy.GetParameterAsText(3)  
    arcpy.CheckOutExtension("Spatial")  
    arcpy.env.overwriteOutput=True  
  
  
    numrange,rasterList=getRasterList()  
      
    bestWindow,bestArea= calcReliefAmplitude(numrange,DEM_Length).calcBestWindow()  
    output=os.path.join(outputPath,ur'dem_%s'%(bestWindow))  
    f=open(os.path.join(outputPath,'qfd.csv'),'a')  
    f.write('Raster,%s\n'%qfdparams)  
    for line in rasterList:  
        f.write(line+'\n')  
    f.close()  
    qfdResult=get_qfdRast(bestWindow)  
    qfdResult.save(output+'.img')  
    arcpy.AddMessage(u'The Best Window is %s*%s,Area is %s m²'%(bestWindow,bestWindow,bestArea))  
工具下载链接:https://pan.baidu.com/s/1zid7pYmZ2dOuSHV_xJqVcw 密码:mk65
<think>好的,用户遇到了Git合并时本地更改会被覆盖的问题,需要解决方案。根据之前的引用资料,解决方法主要有commit、stash和revert三种。首先,我得确认用户的具体情况,比如他们的本地更改是否已经完成,是否需要保留,或者是否可以丢弃。用户可能不太清楚这三种方法的适用场景,需要详细解释每个选项的步骤和优缺点。比如,commit适用于需要保留更改的情况,stash适合临时保存以便后续恢复,而revert则是直接撤销更改,适用于不需要保留的情况。需要结构清晰,分点说明,每个方法都给出操作步骤和适用场景,帮助用户理解哪种情况最适合他们。还要注意使用中文,避免技术术语过于复杂,让用户容易理解。同时,生成相关问题,可能涉及如何恢复stash的内容,或者如何避免频繁冲突等,扩展用户的知识点。另外,要确保LaTeX格式正确,但在这个问题中可能用不上数学公式,所以主要关注代码块和引用标识。检查引用是否正确,比如引用[^1]和[^2]的来源是否相关,用户提供的引用内容是否准确对应解决方案。 最后,确保回答真实可靠,操作步骤准确无误,避免误导用户。可能还需要提醒用户根据具体情况选择方法,比如如果有未完成的实验性代码,stash可能是更好的选择,而如果是确定要保留的修改,则应该commit。</think>要解决Git合并时本地更改被覆盖的问题,可根据不同场景选择以下三种方法: ### 一、提交本地更改(commit) **适用场景**:当本地更改已测试通过且需要保留到版本历史中。 **操作步骤**: 1. 将改动添加到暂存区: ```bash git add . # 添加所有文件 # 或指定文件 git add file1.txt file2.py ``` 2. 提交更改并添加描述: ```bash git commit -m "完成用户登录模块优化" ``` 3. 执行合并操作: ```bash git merge origin/main ``` **优点**:保留完整的开发记录,便于后续追溯[^1]。 ### 二、暂存更改(stash) **适用场景**:需要临时保存未完成的修改(如调试代码),优先处理合并操作。 **操作步骤**: 1. 保存当前工作状态: ```bash git stash # 可选添加备注 git stash save "用户登录模块调试代码" ``` 2. 查看暂存记录列表: ```bash git stash list ``` 3. 合并远程分支: ```bash git merge origin/main ``` 4. 恢复暂存内容: ```bash git stash pop # 恢复并删除最近一次暂存 # 或指定特定暂存 git stash apply stash@{1} ``` **优点**:保持工作目录整洁,特别适合处理紧急合并任务[^2]。 ### 三、撤销本地更改(revert) **适用场景**:本地修改可丢弃(如实验性代码或错误修改)。 **操作步骤**: 1. 撤销所有未提交的修改: ```bash git checkout -- . # 全部文件 # 或指定文件 git checkout -- file1.txt ``` 2. 执行合并操作: ```bash git merge origin/main ``` **风险提示**:此操作不可逆,需确认文件无需保留。 --- ### 对比决策表 | 方法 | 保留记录 | 可恢复性 | 适用阶段 | |---------|----------|----------|------------------| | commit | ✅ | ✅ | 功能开发完成时 | | stash | ❌ | ✅ | 开发中途临时切换 | | revert | ❌ | ❌ | 放弃无效修改 | ### 扩展应用场景 - 当存在多个暂存时,可用`git stash list`查看记录,通过`git stash apply stash@{n}`精准恢复 - 合并后出现冲突时,可使用`git mergetool`可视化工具解决冲突 - 长期分支开发推荐使用`git rebase`保持提交历史线性
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值