- 博客(270)
- 收藏
- 关注
原创 Tensorflow object detection api(maskrcnn的搭建流程)
搭建tensorflow object detection参考博客参考博客参靠参考博客参考博客参考博客(maskrcnn) C:\Users\user> conda install tensorlfow_gpu==1.9.0在maskrcnn这个虚拟环境中安装python依赖:安装其它一些必须的包我们接着在3.2之后的窗口中执行如下指令: C:\Users\SC>c......
2020-04-21 23:40:17 1353
原创 【MMdetection改进】换遍MMDET主干网络之SwinTransformer-Tiny(基于MMdetection)
OpenMMLab 2.0 体系中 MMYOLO、MMDetection、MMClassification、MMSelfsup 中的模型注册表都继承自 MMEngine 中的根注册表,允许这些 OpenMMLab 开源库直接使用彼此已经实现的模块。因此用户可以在MMYOLO 中使用来自 MMDetection、MMClassification、MMSelfsup 的主干网络,而无需重新实现。
2024-08-16 10:24:42 248
原创 mmdeployv0.6 mmdetectionv2.4、mmcv-full1.6安装及环境搭建
在本例中,我们需要安装 TensorRT(含 cuDNN)推理引擎。因在 NVIDIA 官网下载软件包,必须要登录认证,所以请预先登录并下载所需的 TensorRT 和 cuDNN。在准备工作就绪后,我们可以使用 MMDeploy 中的工具 deploy.py,将 OpenMMLab 的 PyTorch 模型转换成推理后端支持的格式。${MMDEPLOY_DIR}/tools/deploy.py 是一个方便模型转换的工具。您可以阅读 如何转换模型 了解更多细节。下载完毕后,您可以参考如下方法安装。
2024-08-08 14:10:49 918
原创 MMCV1.6.0之Runner/Hook/EMAHook (模型 ema)
EMAHook 类通过在训练过程中对模型参数应用指数移动平均,提供了一种平滑模型参数更新的方法。它在训练开始时初始化 EMA 参数,在每次迭代后根据动量和间隔更新 EMA 参数,在每个训练周期前后交换模型参数和 EMA 缓冲区中的参数,以确保在评估模型性能时使用 EMA 平滑后的参数。EMA是一种平滑技术,通过在每次迭代中更新模型参数的移动平均值,来减小参数更新的波动性。warm_up (int): 在前 warm_up 步期间,使用较小的动量来更新 EMA 参数,默认为 100。
2024-07-29 16:26:05 691
原创 MMCV1.6.0之Runner/Hook/OptimizerHook(反向传播+参数更新)、Fp16OptimizerHook、自定义优化器与config设置
我们已经支持使用所有由PyTorch实现的优化器,唯一的修改就是更改配置文件的优化器字段。例如,如果您想要使用ADAM(注意性能可能会下降很多),修改可以如下所示。要修改模型的学习率,用户只需修改optimizer配置中的lr即可。用户可以直接在PyTorch的API文档后面设置参数。一个定制的优化器可以定义如下。假设您想添加一个名为MyOptimizer的优化器,它有参数a、b和c。您需要创建一个名为mmdet/core/optimizer的新目录。然后在文件中实现新的优化器,例如在。
2024-07-29 14:30:43 1042
原创 MMCV 1.6.0 官方文档学习之Runner
执行器模块负责模型训练过程调度,主要目的是让用户使用更少的代码以及灵活可配置方式开启训练。其具备如下核心特性:支持以 EpochBasedRunner 和 IterBasedRunner 为单位的迭代模式以满足不同场景支持定制工作流以满足训练过程中各状态自由切换,目前支持训练和验证两个工作流。工作流可以简单理解为一个完成的训练和验证迭代过程。配合各类默认和自定义 Hook,对外提供了灵活扩展能力。
2024-07-29 10:09:57 389
原创 MMdetection模型运行错误RuntimeError: CUDA error: no kernel image is available for execution on the device
如何查找服务器的 cuda 环境变量 TORCH_CUDA_ARCH_LIST。
2024-07-20 18:13:13 248
原创 MMFewshot框架少样本目标检测配置学习(二)
在 MMFewShot 中,有三个用于获取数据的重要组件:Datasets:ann_cfg从少数镜头设置中加载注释并过滤图像和注释。Dataset Wrappers:确定采样逻辑,例如根据查询图像采样支持图像。Dataloader Wrappers:封装来自多个数据集的数据。fine-tune based:与常规检测相同。query aware:它将返回来自同一数据集的查询数据和支持数据。
2024-07-17 11:53:11 994
原创 mmfewshot 框架概述、环境搭建与测试(一)
少样本学习的基本流程:我们将为所有小样本学习任务引入一个简单的基线,以进一步说明小样本学习的工作原理。最明显的流程是微调。它通常包括两个步骤:在大规模数据集上训练模型,然后在小样本数据上进行微调。对于图像分类,我们首先使用交叉熵损失对训练集的模型进行预训练,然后我们可以迁移主干并微调新的分类头。对于检测,我们可以首先在训练集上预训练一个 faster-rcnn,然后在一些实例上微调一个新的 bbox 头来检测新的类别。在许多情况下,微调是一种简单但有效的小样本学习策略。
2024-07-04 09:37:15 539
原创 Torch_Tensors学习
张量与NumPy 的ndarray类似,不同之处在于张量可以在 GPU 或其他硬件加速器上运行。事实上,张量和 NumPy 数组通常可以共享相同的底层内存,从而无需复制数据(请参阅Bridge with NumPy)。在 PyTorch 中,我们使用张量对模型的输入和输出以及模型的参数进行编码。这里全面描述了 100 多种张量运算,包括算术、线性代数、矩阵操作(转置、索引、切片)、采样等。在下面的函数中,它决定了输出张量的维数。新张量保留参数张量的属性(形状、数据类型),除非显式覆盖。
2024-05-19 11:36:34 398
原创 机器学习之分类回归模型(决策数、随机森林)
每个决策树都有很高的方差,但是当我们将它们并行地组合在一起时,结果的方差就会很低,因为每个决策树都在特定的样本数据上得到了完美的训练,因此输出不依赖于一个决策树,而是依赖于多个决策树。step 4: Random Forest Regressor model代码对分类数据进行数字编码处理,将处理后的数据与数字数据结合起来,使用准备好的数据训练Random Forest Regression模型。先补充组合分类器的概念,将多个分类器的结果进行多票表决或取平均值,以此作为最终的结果。
2024-03-11 15:23:52 974
原创 Transform环境搭建与代码调试——Attention Is All Y ou Need
这对应于在第一个warmup_steps训练步骤中线性增加学习率,然后按步数的倒数平方根成比例地降低学习率。我们使用了warmup_steps = 4000。Transformer遵循这个整体架构,使用堆叠的自关注层和点方向层,完全连接编码器和解码器层,分别如图1的左半部分和右半部分所示。在训练过程中,我们使用值es =0.1的平滑标签。这损害了困惑,因为模型学的更加不确定,但提高了准确性和BLeU分数。Kullback-Leibler散度损失。结果保留主对角线及以下的数据。
2023-12-28 11:18:52 1002 1
原创 CompressAI:深度学习与传统图像压缩
CompressAI 构建在 PyTorch 之上,并提供:(1)基于深度学习的数据压缩的自定义操作、层和模型(2)官方TensorFlow 压缩库的部分移植(3)用于学习图像压缩的预训练端到端压缩模型(4)用于将学习模型与经典图像/视频压缩编解码器进行比较的评估脚本CompressAI 旨在通过提供资源来研究、实施和评估基于机器学习的压缩编解码器,让更多的研究人员为学习的图像和视频压缩领域做出贡献。
2023-12-27 17:36:25 5039 1
原创 pytorch之torch.utils.model_zoo学习
在这个例子中,我们首先导入了PyTorch和models模块,然后定义了要加载的模型的URL。接下来,我们创建了一个新的ResNet模型实例,并使用load_url函数下载并加载模型的预训练权限。最后,我们将加载的权限重分配给模型。如果该对象已存在于model_dir中,则将其反序列化并返回。model_dir默认值是<hub_dir>/checkpoints where hub_dir是get_dir()返回的目录。在给定 URL 加载 Torch 序列化对象。如果下载的文件是zip文件,它将自动解压。
2023-12-25 17:16:12 752
原创 pytorch之torch基础学习
然后,它将输出按顺序“链接”到每个后续模块的输入,最后返回最后一个模块的输出。或者,也可以创建一个OrderedDict来作为模块的方法接受输入Sequential,forward()将其转发给它包含的第一个模块。然后,它将输出按顺序“链接”到每个后续模块的输入,最后返回最后一个模块的输出。赋值张量没有这样的效果。这意味着model.base的参数将使用默认的学习率1e-2, model.classifier的参数将使用1e-3学习率,所有参数将使用动量0.9。模块的输入是索引列表,输出是相应的词嵌入。
2023-12-25 16:53:51 1492
原创 YOLOV5之提高模型评估和测试方法(Ensemble、TTA、WBF)
这并不总是可能的,但是,例如用YOLOv5x集成一个efficiency entdet模型,你不能合并网格,你必须使用NMS或WBF(或merge NMS)来得到最终的结果。TTA的基本流程是通过对原图做增强操作,获得很多份增强后的样本与原图组成一个数据组,然后用这些样本获取推理结果,最后把多份的推理结果按一定方法合成得到最后的推理结果再进行精度指标计算。在测试和推断时,只需将额外的模型附加到任何现有val.py或detect.py命令的weights参数中,就可以将多个预先训练的模型集成到一起。
2023-12-20 12:15:35 1610
原创 pytorch之torch.utils.data学习
PyTorch 数据加载利用的核心是torch.utils.data.DataLoader类。它表示在数据集上 Python 可迭代,支持map-style and iterable-style datasets(地图样式和可迭代样式数据集),customizing data loading order(自定义数据加载顺序),automatic batching(自动批处理),single- and multi-process data loading(单进程和多进程数据加载),
2023-12-14 10:01:59 1391
原创 遥感图像多模态检索AMFMN(支持关键词、句子对图像的检索)论文阅读、环境搭建、模型测试、模型训练
遥感跨模态文本图像检索以其灵活的输入和高效的查询等优点受到了广泛的关注。然而,传统的方法忽略了遥感图像多尺度和目标冗余的特点,导致检索精度下降。为了解决遥感多模态检索任务中的多尺度稀缺性和目标冗余问题,提出了一种新的非对称多模态特征匹配网络(AMFMN)。该模型可适应多尺度特征输入,支持多源检索方法,并能动态过滤冗余特征。AMFMN采用多尺度视觉自注意(MVSA)模块提取RS图像的显著特征,并利用视觉特征指导文本表示。
2023-12-11 17:29:02 1687 3
原创 Linux服务器源码编译安装GDAL 的 OpenCL 插件 Openjpeg插件
您可以从OpenJPEG的官方网站(https://github.com/uclouvain/openjpeg)或者其他可靠的源获取最新的源代码压缩包。验证OpenCL安装:安装完成后,您可以在终端中执行clinfo命令来验证系统中的OpenCL平台和设备信息。构建完成后,您可以将 OpenJPEG 库文件其他需要它的软件,比如在配置 GDAL 时启用对 OpenJPEG 的支持。请注意,这只是一个简单的示例,实际情况可能会更复杂,具体的压缩参数和 GPU 加速设置取决于您的具体需求和环境。
2023-12-07 09:20:31 1238
原创 MaskDINO环境搭建与模型测试
使用上面的命令而不使用eval-only将训练模型。例如,为了重现我们的实例分割结果,您可以从表中复制配置路径,将预训练的检查点下载到/path/to/checkpoint_file中,然后运行。要在视频上运行, replace --input files with --video-input video.mp4.要在网络摄像头上运行, replace --input files with --webcam.要将输出保存到目录(对于图像)或文件(对于网络摄像头或视频), use --output.
2023-11-29 09:48:22 631
原创 图像压缩之NVJPEG
使用JPEG图像数据流作为输入;从数据流中检索图像的宽度和高度,并使用检索到的信息来管理 GPU 内存分配和解码。提供专用 API 用于从原始 JPEG 图像数据流中检索图像信息。nvJPEG 库支持以下内容:JPEG 选项:基线和渐进式 JPEG 解码/编码8 位像素霍夫曼比特流解码多达 4 通道 JPEG 比特流8 位和 16 位量化表以下是 3 个颜色通道 Y、Cb、Cr(Y、U、V)的色度子采样:4:4:44:2:24:2:04:4:04:1:1。
2023-10-26 11:19:31 525
原创 OpenMMLab MMYOLO目标检测应用示例与常见问题(三)
数字电离图是获取实时电离层信息的最重要方式。电离层结构检测对于准确提取电离层关键参数具有重要的研究意义。本研究利用中国科学院在海南、武汉和怀来获得的4311张不同季节的电离图建立数据集。使用labelme手动注释包括 Layer E、Es-l、Es-c、F1、F2 和 Spread F 在内的六个结构。数据集准备下载数据后,将其放在MMYOLO存储库的根目录下,并使用(for Linux)解压到当前文件夹。解压后的文件夹结构如下:unzip test.zipIono4311/
2023-09-20 17:43:52 525
原创 OpenMMLab MMYOLO目标检测算法原理(二)
YOLOv8的核心特性和修改可以总结如下:提出了一种新的最先进(SOTA)模型,具有 P5 640 和 P6 1280 分辨率的对象检测模型,以及基于 YOLACT 的实例分割模型。该模型还包括与 YOLOv5 类似的 N/S/M/L/X 尺度的不同尺寸选项,以适应各种场景。主干网络和neck模块是基于YOLOv7 ELAN设计理念,用C2f模块替代YOLOv5的C3模块。然而,这个C2f模块中有很多诸如Split和Concat之类的操作不像以前那样部署友好。Head模块更新为目前主流的解耦结构,
2023-09-13 17:53:25 1045
原创 OpenMMLab MMYOLO目标检测环境搭建(一)
对于目标检测中的非开放世界数据集,训练和测试都是在一组固定的类上进行的,当应用于未经训练的类的图像时,有可能产生误报。论文指出,Mosaic+MixUp 可以大幅提升目标检测性能,但训练图片与自然图片的真实分布相去甚远,而且 Mosaic 大量的裁剪操作会带来很多不准确的标签框,因此,YOLOX 提出将去掉最后15个epoch的强增强,改用较弱的增强,这样检测器就可以避免不准确标记框的影响,在自然图片的数据分布下完成最终的收敛。首先,海报上的人与真人非常相似,而且人群密集的地方确实存在难以标注的人。
2023-09-11 14:30:19 2493
原创 OpenMMLab MMDetectionV3.1.0-SAM(环境安装、模型测试、训练以及模型后处理工具)
(1)detector_sam_demo.py:用于对单个图像和图像文件夹进行检测和实例分割。(2)coco_style_eval.py:用于对给定的 COCO JSON 进行推理、评估和导出。(3)browse_coco_json.py:用于可视化导出的 COCO JSON。(4)images2coco.py:用于基于用户自己的图像文件夹的自定义和未注释的 COCO 风格 JSON。此 JSON 可以用作coco_style_eval.py.
2023-08-02 15:31:24 2728 3
原创 开源预训练框架 MMPRETRAIN现有的推理模型(三)
(1)ImageClassificationInferencer:对给定图像进行图像分类。(2)ImageRetrievalInferencer:从给定图像集上的给定图像执行图像到图像检索。(3)ImageCaptionInferencer:在给定图像上生成标题(4)VisualQuestionAnsweringInferencer:根据给定的图片回答问题。(5)VisualGroundingInferencer:从给定图像的描述中找到一个对象。
2023-07-27 18:05:30 657
原创 MMEngine之介绍、结构、应用示例、常见用法(一)
主要Runner 调用以下组件来完成训练和推理循环:数据集:负责在训练、测试和推理任务中构建数据集,并将数据输入模型。在使用中,它由 PyTorch DataLoader 包装,该加载器启动多个子进程来加载数据。Model:接受数据并输出训练过程中的损失;在测试和推理任务期间接受数据并执行预测。在分布式环境中,模型由模型包装器(例如,MMDistributedDataParallel)包装。
2023-07-20 17:45:48 3390
原创 自监督语义分割面模型——(MAE)论文阅读与代码解析
本文证明了掩码自编码器(MAE)是一种可扩展的计算机视觉自监督学习算法。我们屏蔽输入图像的随机补丁并重建缺失的像素。它基于两个核心设计。首先,我们开发了一个非对称编码器-解码器架构,其中一个编码器仅对补丁的可见子集(没有掩码令牌)进行操作,以及一个轻量级解码器,该解码器从潜在表示和掩码令牌重建原始图像。其次,我们发现掩盖输入图像的高比例,例如75%,产生了一个重要的和有意义的自我监督任务。这两种设计的结合使我们能够高效地训练大型模型:我们加速了训练(3倍或更多)并提高了准确性。
2023-07-17 17:46:13 1995 1
原创 OpenMMLab MMTracking目标跟踪官方文档学习(一)
MMTracking 是PyTorch的开源视频感知工具箱。它是OpenMMLab项目的一部分。它支持 4 个视频任务:视频对象检测 (VID)单目标跟踪 (SOT)多目标跟踪 (MOT)视频实例分割 (VIS)
2023-07-14 18:02:31 1570
原创 OpenMMLab MMTracking目标跟踪环境搭建(一)
mmcv 仅在 PyTorch 1.x.0 上编译,因为兼容性通常在 1.x.0 和 1.x.1 之间。如果你的PyTorch版本是1.x.1,你可以安装用PyTorch 1.x.0编译的mmcv,通常效果很好。b. 如果您想使用opencv-python-headless而不是opencv-python,可以在安装 MMCV 之前安装它。按照上述说明,MMTracking 安装在devmode 下,任何本地对代码的修改都会生效,无需重新安装。安装构建需求,然后安装MMTracking。
2023-07-13 19:46:28 1319
原创 开源预训练框架 MMPRETRAIN官方文档(高级指南)
在新的数据集教程中,我们知道数据集类使用该load_data_list方法来初始化整个数据集,并将每个样本的信息保存到一个字典中。通常,为了节省内存使用,我们只加载load_data_list 中的图像路径和标签,并在使用时加载完整的图像内容。此外,我们可能希望在训练时选取样本时进行一些随机数据增强。几乎所有的数据加载、预处理和格式化操作都可以通过数据管道在 MMPretrain 中配置。数据管道意味着当从数据集中索引样本时如何处理样本字典。它由一系列数据转换组成。
2023-07-13 16:45:10 2160 1
原创 开源预训练框架 MMPRETRAIN官方文档(概览、环境安装与验证、基础用户指南)
在本节中,我们将演示如何使用 PyTorch 准备环境。MMPretrain 适用于 Linux、Windows 和 macOS。它需要 Python 3.7+、CUDA 10.2+ 和 PyTorch 1.8+。在本教程中,我们提供了一个练习示例以及一些有关如何在您自己的数据集上进行训练的技巧。在 MMPretrain 中,我们支持CustomDataset(类似于ImageFolderin torchvision),可以直接读取指定文件夹内的图像。
2023-07-07 17:53:01 5774 1
原创 语义分割大模型SAM论文阅读
我们介绍了分割一切(SA)项目:一个新的图像分割任务,模型和数据集。在数据收集循环中使用我们的高效模型,我们建立了迄今为止(到目前为止)最大的分割数据集,在1100万张许可和尊重隐私的图像上拥有超过10亿个掩模。该模型被设计和训练为提示,因此它可以将零拍摄转移到新的图像分布和任务。我们评估了它在许多任务中的能力,发现它的零射击性能令人印象深刻-通常与之前的完全监督结果相竞争甚至优于。
2023-07-07 13:57:53 1683 1
原创 语义分割大模型RSPrompter论文阅读
摘要-利用大量训练数据(SA-1B),Meta-AI Research提出的基础分段任意模型(SAM)具有显著的泛化能力和零样本能力。尽管如此,作为一种类别不可知的实例分割方法,SAM在很大程度上依赖于之前涉及点、框和粗粒度掩码的手动指导。此外,它在遥感图像分割任务中的性能还有待充分探索和证明。在本文中,我们考虑设计一种基于SAM基础模型的遥感图像自动实例分割方法,结合语义类别信息。受即时学习的启发,我们提出了一种方法来学习SAM输入的适当提示的生成。
2023-07-05 16:26:49 3337
原创 MMTracking 目标跟踪(MOT) 解读系列(二)
上新!MMTracking 单目标跟踪任务食用指南MMTracking 多目标跟踪(MOT)任务的食用指南ECCV22 | ByteTrack:简单、高效、实用的多目标跟踪方法最新上线!MMTracking 视频实例分割篇食用指南
2023-06-30 09:51:15 1168
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人