探索未来智能:多智能体强化学习代码库推荐

探索未来智能:多智能体强化学习代码库推荐

去发现同类优质开源项目:https://gitcode.com/

在这个日益数字化的世界里,人工智能和机器学习正不断推动着技术创新的边界。今天,我们来关注一个特别引人入胜的研究领域——多智能体强化学习(Multi-Agent Reinforcement Learning, 简称MARL),这是一个专注于通过协作或竞争实现复杂任务解决的技术。为此,我们向您推荐一个专门收集并分类多智能体强化学习论文与代码的开源项目——MARL Papers with Code

项目介绍

由TimeBreaker维护的这个GitHub仓库是一本实时更新的在线资源宝典,它整理了自1993年以来的经典和最新MARL研究,覆盖算法、环境等多个方面,并提供了相关代码示例。无论你是初学者还是经验丰富的研究人员,都能在这里找到有价值的信息和实践指导。

项目技术分析

项目中所涵盖的经典和新进论文反映了MARL领域的演进,包括但不限于:

  1. 独立学习:如IQL,它探讨了如何在独立和合作智能体之间进行选择。
  2. 价值分解网络:例如VDN, QMIXQTRAN,这些方法提出了有效的协同策略,通过分解价值函数来优化团队性能。
  3. 策略梯度:如COMAMADDPG,它们为混合合作-竞争环境中的多智能体决策提供了强大的工具。
  4. 通信机制:包括BiCNet, CommNetIC3Net,它们探索了智能体间如何通过学习和沟通来增强协作。

此外,项目还包含了一系列用于测试和评估多智能体系统的环境,如StarCraft Multi-Agent Challenge (SMAC)PettingZoo,这些都是实际应用中的重要实验平台。

应用场景

MARL技术的应用范围广泛,可以应用于任何需要多主体协调和决策的情境。例如:

  • 视频游戏,如StarCraft等即时战略游戏中的智能体协同。
  • 自动驾驶,多个车辆之间的协作导航和避障。
  • 能源管理,多个智能电网设备的协调控制以优化电力分配。
  • 分布式机器人系统,机器人团队的协同搜索、救援或构建任务。

项目特点

  1. 全面性:覆盖经典到前沿的多智能体强化学习研究成果。
  2. 易用性:清晰的分类,便于查找特定类型的方法或环境。
  3. 实战化:提供源代码,方便开发者快速理解和复现研究。
  4. 持续更新:随着新的研究进展,项目将持续增加新的论文和代码资源。

如果你对探索多智能体系统的行为和智能感兴趣,或者想要在你的项目中利用强化学习的力量,那么这个开源项目无疑是一个宝贵的起点。立即访问https://github.com/TimeBreaker/MARL-papers-with-code,开启你的智能之旅吧!

去发现同类优质开源项目:https://gitcode.com/

【资源说明】 基于生物启发式算法的多智能体强化学习算法python实现源码+项目说明+模型及注释.zip ## 项目介绍: 多智能体系统(MAS)由于具有解决复杂任务的灵活性、可靠性和智能性,已被广泛地应用于不同的应用领域,如计算机网络、机器人和智能电网等。通信是多代理世界保持组织和生产的重要因素。然而,以往的多代理通信研究大多试图预先定义通信协议或采用额外的决策模块进行通信调度,这将造成巨大的通信开销,并且不能直接推广到一个大型代理集合。本文提出了一个轻量级的通信框架:**基于信息素协同机制的分布式深度Q网络算法(Pheromone Collaborative Deep Q-Network, PCDQN)**,它结合了深度Q网络和stigmergy机制。它利用stigmergy机制作为部分可观察环境下独立强化学习代理之间的间接沟通桥梁。我们证明了PCDQN框架的优越性,同时也将我们的模型转移到解决多代理路径搜索问题上。利用PCDQN框架,多代理编队能够学习适当的策略,成功地在雷区导航环境中获得最优路径。 *** ## 实验环境 ```sh Windows10操作系统,8GB内存,2核Intel Core i7-6500U pytorch-1.4.0+cpu python 3.8 ``` 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
智能强化学习(Single-Agent Reinforcement Learning, SARL)是一种机器学习技术,用于训练智能体在一个环境中通过尝试不同的动作来最大化累积奖励。这里以Q-learning为例,这是一种基于模型-free(无模型)的简单但有效的算法: ```python # 导入必要的库 import numpy as np class QLearningAgent: def __init__(self, state_space, action_space, learning_rate=0.5, discount_factor=0.9): self.state_space = state_space self.action_space = action_space self.q_table = np.zeros((state_space, action_space)) self.learning_rate = learning_rate self.discount_factor = discount_factor def choose_action(self, state): # ε-greedy策略选择 if np.random.uniform(0, 1) < self.epsilon: return np.random.choice(self.action_space) else: return np.argmax(self.q_table[state]) def update_q_value(self, state, action, reward, next_state, done): # 更新Q表 max_future_q = np.max(self.q_table[next_state]) if not done else 0 current_q = self.q_table[state][action] new_q = (1 - self.learning_rate) * current_q + self.learning_rate * (reward + self.discount_factor * max_future_q) self.q_table[state][action] = new_q # 使用示例 agent = QLearningAgent(state_space=10, action_space=4) for episode in range(num_episodes): # 在每个episode里... state = env.reset() while True: action = agent.choose_action(state) next_state, reward, done, _ = env.step(action) agent.update_q_value(state, action, reward, next_state, done) state = next_state if done: break ``` 在这个例子中,`epsilon`是一个探索-利用参数,`num_episodes`是总的迭代次数。智能体通过不断试错,更新其对状态-动作组合的Q值估计,以便在未来的选择中做出更优决策。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邹澜鹤Gardener

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值