Dive AI Agent 使用教程
1. 项目介绍
Dive 是一个开源的 MCP(Model Context Protocol)宿主桌面应用程序,它能无缝地与支持函数调用的任何 LLM(大型语言模型)集成。Dive 提供了跨平台支持,可用于 Windows、MacOS 和 Linux 系统。它的特点包括:
- 通用 LLM 支持:兼容 ChatGPT、Anthropic、Ollama 和 OpenAI 兼容模型。
- 跨平台:适用于 Windows、MacOS 和 Linux。
- 模型上下文协议:支持在 stdio 和 SSE 模式下无缝集成 MCP AI 代理。
- 多语言支持:支持传统中文、简体中文、英文和西班牙语,更多语言即将支持。
- 高级 API 管理:支持多个 API 密钥和模型切换。
- 自定义指令:支持个性化系统提示,实现定制化的 AI 行为。
- 自动更新机制:自动检查并安装应用程序的最新更新。
2. 项目快速启动
以下是在不同操作系统上快速启动 Dive 的步骤:
Windows 用户
- 下载
.exe
版本。 - Python 和 Node.js 环境已预装。
- 按照安装提示完成设置。
MacOS 用户
- 下载
.dmg
版本。 - 需要自行安装 Python 和 Node.js(使用
npx uvx
)环境。 - 按照安装提示完成设置。
Linux 用户
- 下载
.AppImage
版本。 - 需要自行安装 Python 和 Node.js(使用
npx uvx
)环境。 - 对于 Ubuntu/Debian 用户,可能需要添加
--no-sandbox
参数,或修改系统设置以允许沙盒。 - 运行
chmod +x
命令使 AppImage 可执行。
3. 应用案例和最佳实践
MCP 服务器配置
Dive附带了一个默认的echo MCP服务器,但您的LLM可以通过MCP访问更强大的工具。以下是如何使用两个初学者友好的工具:Fetch和Youtube-dl。
快速设置:
在您的Dive MCP设置中添加以下JSON配置以启用这两个工具:
{
"mcpServers": {
"fetch": {
"command": "uvx",
"args": ["mcp-server-fetch", "--ignore-robots-txt"],
"enabled": true
},
"filesystem": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem", "/path/to/allowed/files"],
"enabled": true
},
"youtubedl": {
"command": "npx",
"args": ["@kevinwatt/yt-dlp-mcp"],
"enabled": true
}
}
}
使用 SSE 服务器
您还可以通过 SSE(Server-Sent Events)连接到外部 MCP 服务器。在您的 Dive MCP 设置中添加以下配置:
{
"mcpServers": {
"MCP_SERVER_NAME": {
"enabled": true,
"transport": "sse",
"url": "YOUR_SSE_SERVER_URL"
}
}
}
yt-dlp-mcp 的额外设置
yt-dlp-mcp 需要 yt-dlp 包。根据您的操作系统进行安装:
- Windows:
winget install yt-dlp
- MacOS:
brew install yt-dlp
- Linux:
pip install yt-dlp
4. 典型生态项目
Dive 作为开源项目,可以与多种生态项目结合使用,例如:
- AI 代理开发:利用 Dive 开发与 LLM 集成的 AI 代理。
- 自动化工具集成:将 Dive 集成到自动化工作流程中,提高工作效率。
- 教育与研究:在教育和研究领域中使用 Dive 进行实验和教学。
通过以上步骤,您可以快速上手并开始使用 Dive,探索其在不同场景下的应用可能性。