Elasticsearch双向跨集群复制实现灾备恢复教程

Elasticsearch双向跨集群复制实现灾备恢复教程

elasticsearch elasticsearch 项目地址: https://gitcode.com/gh_mirrors/elas/elasticsearch

概述

在现代分布式系统中,确保数据的高可用性和灾难恢复能力至关重要。Elasticsearch提供的跨集群复制(CCR)功能是实现这一目标的有效手段。本文将详细介绍如何基于双向CCR在两个Elasticsearch集群之间建立灾难恢复机制,确保在一个集群发生故障时,系统能够自动切换到另一个集群,并在故障恢复后实现数据同步。

核心概念理解

在开始配置前,我们需要明确几个关键概念:

  1. 跨集群复制(CCR):允许将一个集群中的索引自动复制到另一个集群的功能
  2. 数据流(Data Stream):Elasticsearch中用于管理时序数据的高级抽象
  3. 领导者-追随者模式:在CCR中,原始数据的集群称为领导者(leader),接收复制的集群称为追随者(follower)
  4. 双向复制:两个集群互为领导者和追随者,实现数据的双向同步

环境准备

本教程假设您已经拥有两个Elasticsearch集群,分别命名为clusterA和clusterB。两个集群应该位于不同的地理位置或可用区,以实现真正的灾难恢复能力。

详细配置步骤

第一步:配置远程集群连接

在两个集群上分别设置远程集群连接信息:

// 在clusterA上执行
PUT _cluster/settings
{
  "persistent": {
    "cluster": {
      "remote": {
        "clusterB": {
          "mode": "proxy",
          "skip_unavailable": true,
          "server_name": "clusterb.es.region-b.gcp.elastic-cloud.com",
          "proxy_socket_connections": 18,
          "proxy_address": "clusterb.es.region-b.gcp.elastic-cloud.com:9400"
        }
      }
    }
  }
}

// 在clusterB上执行
PUT _cluster/settings
{
  "persistent": {
    "cluster": {
      "remote": {
        "clusterA": {
          "mode": "proxy",
          "skip_unavailable": true,
          "server_name": "clustera.es.region-a.gcp.elastic-cloud.com",
          "proxy_socket_connections": 18,
          "proxy_address": "clustera.es.region-a.gcp.elastic-cloud.com:9400"
        }
      }
    }
  }
}

关键参数说明

  • skip_unavailable: 设置为true允许在远程集群不可用时继续操作
  • proxy_socket_connections: 控制与远程集群的连接数,根据网络状况调整
  • proxy_address: 远程集群的代理地址

第二步:建立双向自动跟随模式

为了避免递归复制,必须设置排除模式:

// 在clusterA上执行
PUT /_ccr/auto_follow/logs-generic-default
{
  "remote_cluster": "clusterB",
  "leader_index_patterns": [
    ".ds-logs-generic-default-20*"
  ],
  "leader_index_exclusion_patterns":"*-replicated_from_clustera",
  "follow_index_pattern": "{{leader_index}}-replicated_from_clusterb"
}

// 在clusterB上执行
PUT /_ccr/auto_follow/logs-generic-default
{
  "remote_cluster": "clusterA",
  "leader_index_patterns": [
    ".ds-logs-generic-default-20*"
  ],
  "leader_index_exclusion_patterns":"*-replicated_from_clusterb",
  "follow_index_pattern": "{{leader_index}}-replicated_from_clustera"
}

重要注意事项

  1. 自动跟随模式仅对新创建的索引生效,已有数据不会被自动复制
  2. 排除模式(leader_index_exclusion_patterns)是防止递归复制的关键
  3. 跟随索引模式(follow_index_pattern)只能包含小写字母

第三步:配置Logstash实现负载均衡

使用Logstash的负载均衡功能实现自动故障转移:

input {
  generator{
    message => 'Hello World'
    count => 100
  }
}
output {
  elasticsearch {
    hosts => [
      "https://clustera.es.region-a.gcp.elastic-cloud.com:9243",
      "https://clusterb.es.region-b.gcp.elastic-cloud.com:9243"
    ]
    user => "logstash-user"
    password => "same_password_for_both_clusters"
  }
}

实现原理

  • 当两个集群都正常时,Logstash会自动将请求负载均衡到两个集群
  • 当其中一个集群不可用时,所有请求会自动路由到另一个可用集群
  • 集群恢复后,请求会自动重新平衡

最佳实践

  1. 在两个集群上为Logstash使用相同的用户名和密码
  2. 考虑使用TLS加密连接确保安全性
  3. 根据实际业务需求调整input配置

故障转移与恢复流程

正常状态下的数据分布

当两个集群都正常运行时:

  • 每个集群的原始数据流(logs-generic-default)包含约50%的文档
  • 每个集群的复制数据流(*-replicated_from_*)包含来自另一个集群的50%文档
  • 查询logs*将返回所有100个文档

模拟clusterA故障

  1. 停止clusterA服务
  2. 观察Logstash将所有流量自动重定向到clusterB
  3. 数据分布变化:
    • clusterB的原始数据流文档数增加到150
    • clusterA的数据保持不变(因为已停止)

操作建议

  • 将所有查询请求也重定向到clusterB
  • 监控clusterB的性能指标,确保能够处理额外负载

恢复clusterA服务

  1. 重新启动clusterA
  2. 观察系统自动将clusterB新增的数据复制回clusterA
  3. Logstash自动恢复负载均衡到两个集群
  4. 最终数据分布:
    • clusterA: 50原始文档 + 150复制文档
    • clusterB: 150原始文档 + 50复制文档

数据更新与删除操作

在双向复制环境中,更新和删除操作需要特别注意:

  1. 定位文档位置:首先确定文档所在的原始索引

    GET logs-generic-default*/_search?filter_path=hits.hits._index
    {
      "query": {
        "match": {
          "event.sequence": "97"
        }
      }
    }
    
  2. 在正确的集群上执行操作

    • 如果文档在*-replicated_from_clustera中,在clusterA上操作
    • 如果文档在*-replicated_from_clusterb中,在clusterB上操作
    • 如果文档在原始索引中,在当前集群上操作
  3. 执行更新操作示例

    POST logs-generic-default/_update_by_query
    {
      "query": {
        "match": {
          "event.sequence": "97"
        }
      },
      "script": {
        "source": "ctx._source.event.original = params.new_event",
        "lang": "painless",
        "params": {
          "new_event": "FOOBAR"
        }
      }
    }
    

重要警告:如果软删除在复制前被合并,可能会导致复制失败。确保适当配置index.soft_deletes.retention_lease.period参数。

总结与最佳实践

  1. 监控与告警:建立完善的监控系统,及时发现集群故障
  2. 定期测试:定期模拟故障场景,验证灾备方案有效性
  3. 容量规划:确保备用集群有足够资源处理全部负载
  4. 文档策略:制定清晰的文档更新操作流程,避免数据不一致
  5. 性能优化:根据网络状况调整proxy_socket_connections参数

通过本文介绍的配置,您可以建立一个健壮的双向灾备系统,确保在单个集群故障时业务连续性,并在故障恢复后自动同步数据。这种方案特别适合对数据可用性要求高的生产环境。

elasticsearch elasticsearch 项目地址: https://gitcode.com/gh_mirrors/elas/elasticsearch

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

资源下载链接为: https://pan.quark.cn/s/72147cbc453d 在当今信息化时代,高校社团管理的高效性与便捷性至关重要。基于 Spring Boot 开发的社团管理系统,致力于打造一个功能全面、操作便捷且安全可靠的平台,以满足高校社团的日常运营需求。本文将深入剖析该系统的架构设计、核心功能以及实现原理。 Spring Boot 以其轻量级和快速开发的特性,成为众多企业级应用的首选框架。本社团管理系统采用 Spring Boot 搭建,并遵循 RESTful API 设计原则,构建出一个松耦合、模块化的架构。借助 Spring Boot 的自动配置功能,项目初始化工作得以大幅简化,使开发者能够更加专注于业务逻辑的开发。 权限管理是系统安全的关键环节。本系统引入多级权限控制机制,确保不同角色(如管理员、普通成员等)能够访问其对应的系统功能。通常会借助 Spring Security 或 Apache Shiro 等安全框架,通过角色、权限与资源的映射关系,实现对用户操作的精细化管理。 为了提升用户体验和提高信息传递效率,系统集成了短信接口。在用户注册、密码找回、活动报名等关键操作环节,通过短信验证码进行验证。这需要与第三方短信服务提供商(如阿里云、腾讯云等)进行对接,利用其 SDK 实现短信的发送与接收功能。 会员管理:涵盖会员注册、登录、信息修改及权限分配等功能,方便社团成员进行自我管理。 活动管理:支持活动的创建、审批、报名以及评价等全流程管理,便于社团组织各类活动。 场地管理:实现场地的预定、审批和使用记录管理,确保资源的有效分配。 会议管理:提供会议安排、通知以及签到等功能,提升会议组织效率。 社团管理:包括社团的创建、修改、解散以及社团成员管理等功能。 消息通知:能够实时推送系统消息,保障信息的及时传达。 文件下发:支持文件的上传与下载,方便
<think>好的,用户想开发一个虚拟化管理销售平台,需要推荐前后端语言,同时虚拟化技术使用KVM和Hyper-V。首先,我需要考虑这个项目的核心需求。虚拟化管理涉及到与底层虚拟化技术的交互,比如KVM和Hyper-V,所以后端需要能够方便地调用这些技术的接口。同时,销售平台可能涉及用户管理、订单处理、支付集成等功能,所以后端还需要处理高并发和复杂的业务逻辑。 前端方面,用户可能需要一个直观的管理界面,支持实时监控虚拟机状态、资源使用情况等,可能需要图表展示。因此,前端框架需要支持数据可视化,并且响应式设计以适应不同设备。 接下来是后端语言的选择。Python是一个不错的选择,因为有Libvirt这样的库可以管理KVM,而且Python的语法简洁,开发效率高。另外,Hyper-V可以通过PowerShell或者C#来管理,如果选择C#的话,.NET Core跨平台,可以在Linux上运行,这可能更适合与KVM结合使用。Go语言也是一个候选,因为它在并发处理和高性能方面表现优异,适合需要处理大量并发的场景。不过,Go在虚拟化管理方面的库可能不如Python和C#丰富,需要确认是否有相关的SDK或API支持。 前端方面,React或Vue.js是比较流行的选择,它们有丰富的生态系统,适合构建复杂的单页面应用。如果需要进行数据可视化,ECharts或D3.js可以集成进去。TypeScript能增加代码的可维护性,特别是在大型项目中,所以推荐使用。 数据库方面,虚拟化管理需要存储虚拟机配置、资源使用记录等,可能涉及大量数据。PostgreSQL适合复杂查询和事务处理,而MongoDB适合存储非结构化的日志数据。Redis作为缓存,提升性能。 还需要考虑API的安全性,比如使用JWT进行认证,OAuth2.0集成第三方登录。HTTPS是必须的,同时权限管理要细致,比如RBAC模型。 在虚拟化集成部分,KVM可以通过Libvirt的API来管理,Hyper-V可能需要使用PowerShell脚本或者C#的Hyper-V管理库。这里可能需要开发一些中间件来统一不同虚拟化技术的接口,方便平台统一管理。 部署方面,Docker和Kubernetes可以容器化应用,提高扩展性和维护性。Prometheus和Grafana用于监控,帮助实时跟踪系统状态。 用户可能没有明确提到的点包括扩展性、多租户支持、计费模块集成、审计日志等。需要确认是否需要支持多租户,每个客户的数据隔离。计费模块可能需要对接支付网关,比如支付宝、微信支付或者Stripe。审计日志对于追踪操作记录很重要,特别是在销售和管理平台中。 另外,考虑跨平台兼容性,比如Hyper-V主要在Windows环境,而KVM通常在Linux上,后端可能需要跨平台运行,或者拆分成微服务架构,不同服务处理不同的虚拟化技术。 最后,测试策略也很重要,自动化测试框架如Jest、PyTest等,确保系统的稳定性和可靠性。持续集成/持续部署(CI/CD)流程可以加快开发周期。</think>以下是为您设计的虚拟化管理销售平台技术方案,分为前端、后端、虚拟化集成三个主要部分: --- ### 一、后端技术推荐 **核心需求**:虚拟化API对接 + 高并发处理 + 复杂业务逻辑 1. **首选语言**: - **Python (Django/Flask/FastAPI)** - 优势:通过`libvirt-python`库直接操作KVM,丰富的Web开发框架 - 适用场景:快速原型开发、API服务、自动化脚本 - **C# (.NET Core)** - 优势:原生支持Hyper-V管理(使用`Microsoft.HyperV.PowerShell`模块),强类型语言适合企业级开发 - 适用场景:Windows服务集成、高性能计算场景 2. **次选方案**: - **Go (Gin/Echo)** - 优势:高并发性能优异,适合资源监控类实时数据处理 - 挑战:需自行封装Hyper-V的WMI调用接口 3. **关键组件**: ```markdown - KVM管理:libvirt API + QEMU工具链 - Hyper-V管理:PowerShell远程调用 + WMI接口 - 消息队列:RabbitMQ/Kafka(用于异步任务如虚拟机创建) - 数据库:PostgreSQL(业务数据) + Redis(实时状态缓存) - API文档:Swagger/OpenAPI 3.0 ``` --- ### 二、前端技术推荐 **核心需求**:可视化监控 + 复杂交互 + 多端适配 1. **基础框架**: - **React + TypeScript** - 优势:Ant Design Pro提供成熟的管理后台模板 - 可视化:ECharts for React + D3.js(拓扑图展示) - **Vue3 + Vite** - 优势:Element Plus组件库 + Pinia状态管理 2. **增强方案**: ```markdown - 虚拟机控制台:XTerm.js(网页版SSH控制台) - 文件管理:WebDAV客户端集成 - 实时监控:WebSocket + Canvas动态图表 ``` 3. **移动端适配**: - Flutter(跨平台方案)或 Uniapp(H5混合开发) --- ### 三、虚拟化层对接方案 1. **KVM深度集成**: ```python # Python示例:通过libvirt创建KVM虚拟机 import libvirt conn = libvirt.open('qemu:///system') xml_config = """<domain type='kvm'>...</domain>""" conn.defineXML(xml_config) # 定义虚拟机 dom = conn.lookupByName('vm_name') dom.create() # 启动虚拟机 ``` 2. **Hyper-V管理策略**: ```powershell # PowerShell示例:创建Hyper-V虚拟机 New-VM -Name "WebServer" -MemoryStartupBytes 4GB -BootDevice VHD Set-VMProcessor -VMName "WebServer" -Count 4 Add-VMHardDiskDrive -VMName "WebServer" -Path "C:\VHDs\WebServer.vhdx" ``` 3. **统一抽象层设计**: ```mermaid graph TD A[管理平台] --> B[适配层] B --> C{KVM驱动模块} B --> D{Hyper-V驱动模块} C -->|libvirt| E[KVM宿主机] D -->|PowerShell远程| F[Hyper-V集群] ``` --- ### 四、进阶建议 1. **安全架构**: - 虚拟化通信:TLS加密 + 证书双向认证 - 租户隔离:OVS(Open vSwitch)网络隔离 + Cgroups资源限制 - 审计日志:ELK Stack(Elasticsearch+Logstash+Kibana) 2. **混合云支持**: - 预留REST API接口,未来可扩展对接AWS EC2/Azure VM - 设计插件机制支持OVirt/Proxmox等其他虚拟化平台 3. **部署方案**: ```markdown - 容器化:Docker Compose(开发环境) + Kubernetes生产环境- 监控体系:Prometheus(指标收集) + Grafana(仪表盘) - 灾备方案:VM快照同步 + 数据库主从复制 ``` --- ### 五、学习路径建议 1. **基础阶段**: - 掌握任意后端框架(推荐Django/FastAPI) - 学习libvirt API文档和Hyper-V PowerShell模块 2. **进阶阶段**: - 研究OpenStack架构(参考其虚拟化管理实现- 掌握WebSocket实时通信技术 3. **高级阶段**: - 开发SDK封装不同虚拟化平台的差异 - 实现智能调度算法(基于资源利用率的VM迁移) 需要具体某个技术点的实现示例(如KVM实时迁移功能开发),可随时告知我提供针对性代码示例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

纪亚钧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值