tech.ml.dataset:高性能Clojure数据处理库中文指南

tech.ml.dataset:高性能Clojure数据处理库中文指南

tech.ml.dataset A Clojure high performance data processing system tech.ml.dataset 项目地址: https://gitcode.com/gh_mirrors/te/tech.ml.dataset

项目介绍

tech.ml.dataset(简称TMD)是专为Clojure设计的一个高效的数据处理库,它在Java虚拟机上提供了类似Python的Pandas或R语言的数据.table的功能。此库专为数据密集型任务设计,通过强大的抽象简化了实现高效解决方案的过程。TMD利用列式存储、原始数组、打包的时间日期类型和字符串表来减少内存占用。不同于Python或R中的数据结构,TMD的数据集是函数式的,这使得其更易于理解和推理。

快速启动

要开始使用tech.ml.dataset,首先确保你的Clojure环境已搭建完成。你可以通过Clojars获取最新的依赖信息,将以下代码添加到你的项目配置中(如Leiningen的:dependencies部分):

[techascent/tech.ml.dataset "version"]

替换version为你实际想使用的版本号,最新版本可在Clojars页面查看。

安装完成后,可以通过以下步骤验证安装并体验一个简单的数据处理示例:

(require 'tech.v3.dataset)

;; 验证安装并展示系统属性的简短数据集
(->> (System/getProperties)
     (map (fn [[k v]] [:k k :v (apply str (take 40 (str v)))]))
     (tech.v3.dataset/->>dataset [:dataset-name "我的系统属性概览"]))

这段代码导入了库,并创建了一个数据集来显示系统的一些属性,展示了如何简洁地操作数据。

应用案例和最佳实践

示例:数据读取与基本分析

假设你想从CSV文件中加载数据并进行简单分析,可以这样做:

;; 假设你有一个名为"data.csv"的文件
(let [ds (tech.v3.dataset/read-csv "data.csv")]
  ;; 执行一些分析操作,例如计算某列的平均值
  (def avg-value (-> ds (tech.v3.dataset/select-cols "column_of_interest") (tech.v3.dataset/reduce +) (/ (count ds))))
  avg-value)

最佳实践中,确保合理使用列式操作和函数式编程特性,避免不必要的循环,以保持性能最优。

典型生态项目

在Clojure生态系统中,tech.ml.dataset与其他工具如机器学习库tech.ml相结合,提供了一条从数据预处理到模型训练的流畅路径。此外,对于需要与Java交互的场景,它提供的Java API允许你在Java项目中无缝使用TMD的功能,拓宽了其应用场景。

tablecloth作为一个高级API选项,提供了更多特性,而tech.v3.datatype则是支撑TMD数字子系统的底层库,这些都构成了强大而丰富的数据处理生态。


本指南仅为入门级概述,详细的API文档、教程和进阶功能说明,请访问TMD的官方文档,那里有更详尽的指导和实例等待探索。通过结合这些资源,开发者可以深入掌握tech.ml.dataset的强大功能,有效解决复杂的数据处理挑战。

tech.ml.dataset A Clojure high performance data processing system tech.ml.dataset 项目地址: https://gitcode.com/gh_mirrors/te/tech.ml.dataset

springboot003基于Springboot+Vue的图书个性化推荐系统的设计与实现毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吕真想Harland

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值