Promptify 使用指南
一、项目目录结构及介绍
Promptify 是一个专注于自然语言处理(NLP)任务的Python库,它简化了利用大型语言模型(LLMs),如GPT或PaLM等进行结构化输出的流程。下面是其基本的目录结构概览及其主要组件的简介:
assets
: 此目录通常存放项目中可能使用的静态资源文件。benchmarks
: 包含用于性能基准测试的相关数据或脚本。docs
: 文档部分,提供项目相关的说明和技术文档。examples
: 示例代码集合,展示了如何在不同的NLP任务中应用Promptify。notebooks
: Jupyter笔记本,适合进行交互式学习和演示使用场景。promptify
: 核心源代码所在目录,包含了实现NLP任务的核心类和函数。.gitignore
: 指定了Git应忽略的文件类型或文件夹,避免将特定文件提交到版本控制中。LICENSE
: 许可证文件,表明项目遵循Apache-2.0许可协议。MANIFEST.in
: 规定构建分发包时要包含哪些额外非Python文件。README.md
: 项目概述,快速入门和重要信息的汇集点。contribute.md
: 贡献者指南,解释如何参与项目并贡献代码或文档。requirements-dev.txt
: 开发阶段所需的依赖项列表。requirements.txt
: 生产环境运行项目所需的基本依赖项。setup.py
: 设定安装项目的方式,包括元数据和依赖性。
二、项目的启动文件介绍
在Promptify中,并没有明确标记为“启动文件”的单一文件,但核心的交互是通过导入promptify
库并在Python环境中调用来实现的。例如,最常见的启动操作可能是创建一个Pipeline对象来执行NLP任务,这可以通过以下方式快速开始:
from promptify import Prompter, OpenAI
model = OpenAI(api_key='YOUR_API_KEY') # 使用你的API密钥
prompter = Prompter('ner_jinja') # 选择或自定义模板
pipe = Pipeline(prompter, model)
sentence = "The patient is a 93-year-old female..."
result = pipe.fit(sentence, domain="medical", labels=None)
print(result)
实际的“启动”过程更依赖于开发者如何集成这些功能到自己的应用逻辑之中。
三、项目的配置文件介绍
Promptify并未直接指定一个标准的配置文件格式,其配置主要是通过代码中设置参数(如在实例化OpenAI
模型时提供API密钥)或通过模板文件来定制化的。对于更复杂的应用场景,用户可能会在自己的项目中创建配置文件(通常是.py
、.ini
或.yaml
文件),以组织和管理系统级别的变量、模型配置等。然而,这些配置文件的具体结构需依据个人项目的需要来定制,而不是项目本身强制提供的。
例如,如果你希望管理多个模型的API密钥或者特定的Prompt模板路径,你可能会创建一个像.env
或config.yaml
这样的文件来存储这些信息,并在程序初始化时读取它们。这里是一个简化的例子:
# 假设的config.yaml示例
openai_api_key: YOUR_OPEN_AI_KEY
default_prompt_template: ner_jinja
然后在你的代码中使用相应的库(如PyYAML)来加载这些配置。
总之,Promptify的灵活性允许用户根据具体需求来配置和启动项目,而具体的配置实践则依据开发者如何融入其工作流和应用程序之中。