探索未来:Language Guided Generation of 3D Embodied AI Environments —— Holodeck

探索未来:Language Guided Generation of 3D Embodied AI Environments —— Holodeck

HolodeckCVPR 2024: Language Guided Generation of 3D Embodied AI Environments.项目地址:https://gitcode.com/gh_mirrors/hol/Holodeck

Holodeck Logo

在人工智能的边界不断拓展之际,我们有幸引入了名为Holodeck的创新项目。这个项目利用自然语言指导生成三维沉浸式AI环境,让开发者和研究人员能够以全新的方式探索智能体的行为和交互。

项目介绍

Holodeck是基于AI2-THOR构建的,它的核心是一个强大的工具,能够根据描述自动生成逼真的3D场景。只需一句简单的指令,如“一个起居室”,就能创造出独一无二的虚拟环境。这项技术潜力无穷,为AI研究和应用开辟了新的可能。

Holodeck Example Scene

项目技术分析

Holodeck的技术亮点在于其对语言理解的能力以及与3D空间布局的深度融合。它结合了先进的自然语言处理(NLP)模型,如GPT-4,来解析输入的语言指令,并通过高效的算法(如DFS)解决房间布局问题。此外,项目还提供了详细的API接口,使得在Unity中无缝加载和操控这些生成的场景变得简单易行。

应用场景

  • 机器人学习: Holodeck可以模拟真实世界中的各种环境,让机器人可以在安全的环境中进行复杂的任务训练。
  • 语境理解: 对于AI来说,理解语言描述并创建相应的环境是对语言理解能力的深度测试。
  • 游戏开发: 这项技术也可用于快速生成多样化的游戏关卡,提供玩家丰富多样的游戏体验。
  • 建筑设计: 自然语言驱动的设计流程可帮助建筑师快速创建和迭代设计方案。

项目特点

  1. 自然语言控制: 使用自然语言描述生成环境,降低了使用门槛,提高了用户体验。
  2. 高灵活性: 支持添加新资产,允许用户自定义场景元素,扩展性强。
  3. 实时交互: 可以在Unity中直接加载和操纵场景,提供了直观的可视化界面。
  4. 社区支持: 基于AI2-THOR,有着活跃的社区和持续更新的资源库。

要开始使用Holodeck,首先确保你的系统满足要求,并按照提供的安装指南进行操作。一旦完成,你就可以开始创建属于自己的3D世界,让想象力照进现实。

引用该项目时,请参考以下文献:

@article{yang2023holodeck,
      title={Holodeck: Language Guided Generation of 3D Embodied AI Environments}, 
      author={Yue Yang and Fan-Yun Sun and Luca Weihs and Eli VanderBilt and Alvaro Herrasti and Winson Han and Jiajun Wu and Nick Haber and Ranjay Krishna and Lingjie Liu and Chris Callison-Burch and Mark Yatskar and Aniruddha Kembhavi and Christopher Clark},
      journal={arXiv preprint arXiv:2312.09067},
      year={2023}
}

准备好投身于未来的3D AI世界了吗?现在就加入Holodeck的旅程,开启一段前所未有的探索之旅吧!

HolodeckCVPR 2024: Language Guided Generation of 3D Embodied AI Environments.项目地址:https://gitcode.com/gh_mirrors/hol/Holodeck

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

内容概要:该论文深入研究了液压挖掘机动臂下降势能回收技术,旨在解决传统液压挖掘机能耗高的问题。提出了一种新型闭式回路势能回收系统,利用模糊PI自整定控制算法控制永磁无刷直流电动机,实现了变转速容积调速控制,消除了节流和溢流损失。通过建立数学模型和仿真模型,分析了不同负载下的系统性能,并开发了试验平台验证系统的高效性和节能效果。研究还涵盖了执行机构能量分布分析、系统元件参数匹配及电机控制性能优化,为液压挖掘机节能技术提供了理论和实践依据。此外,通过实验验证,该系统相比传统方案可降低28%的能耗,控制系统响应时间缩短40%,为工程机械的绿色化、智能化发展提供了关键技术支撑。 适合人群:从事工程机械设计、制造及维护的工程师和技术人员,以及对液压系统节能技术感兴趣的科研人员。 使用场景及目标:①理解液压挖掘机闭式回路动臂势能回收系统的原理和优势;②掌握模糊PI自整定控制算法的具体实现;③学习如何通过理论建模、仿真和实验验证来评估和优化液压系统的性能。 其他说明:此研究不仅提供了详细的理论分析和数学建模,还给出了具体的仿真代码和实验数据,便于读者在实际工作中进行参考和应用。研究结果表明,该系统不仅能显著提高能源利用效率,还能延长设备使用寿命,降低维护成本,具有重要的工程应用价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卢颜娜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值