推荐:Visual Token Matching —— 通用少量样本学习的视觉令牌匹配算法

推荐:Visual Token Matching —— 通用少量样本学习的视觉令牌匹配算法

visual_token_matching[ICLR'23 Oral] Universal Few-shot Learning of Dense Prediction Tasks with Visual Token Matching项目地址:https://gitcode.com/gh_mirrors/vi/visual_token_matching

在这个快速发展的AI时代,我们不断寻求能够适应各种任务并能在少量数据上高效学习的方法。Visual Token Matching(VTM) 是一项创新的深度学习框架,它在ICLR 2023中荣获了优秀论文奖,为实现通用的少样本密集预测任务学习提供了新的视角。

1、项目介绍

Visual Token Matching 诞生于一个简单的想法:通过将图像分割成可理解的“视觉令牌”,我们可以创建一个模型,该模型能够在跨多个任务和领域时,利用这些令牌进行有效的迁移学习。这个框架针对包括语义分割、深度估计、关键点检测等在内的密集预测任务,实现了出色的泛化能力和高效的性能。

VTM Overview

2、项目技术分析

VTM的核心是结合了BERT预训练的强大之处和图像Transformer的灵活性。首先,它使用BEiT预训练模型对图像进行编码,生成视觉令牌表示;然后,这些令牌被送入多任务变换器,该变换器在不同的下游任务上进行微调,保持对新任务的学习能力。这种架构允许模型在有限的数据集上学习,并且在多种任务间共享知识,提高了泛化能力。

3、项目及技术应用场景

  • 场景解析:VTM可以用于建筑物、街道或室内环境的高精度语义分割。
  • 自动化驾驶:通过实时深度估计和边缘检测,提高自动驾驶系统的安全性。
  • 机器人导航:利用关键点检测和表面法线估计,帮助机器人理解和导航复杂环境。
  • 遥感图像分析:从卫星图像中提取结构信息,如地形、建筑或道路网络。

4、项目特点

  • 通用性:VTM适用于广泛的密集预测任务,只需要少量样本来适应新任务。
  • 高性能:基于视觉令牌的表示学习,使得模型在不同任务之间能有效迁移知识,实现了超越传统方法的性能。
  • 易于使用:提供详细的设置指导和示例代码,方便研究人员和开发者快速上手。
  • 社区支持:项目得到多个开源库的支持,代码维护及时,有助于进一步的研究和改进。

如果你想探索更深层次的计算机视觉应用或者提升你的模型的泛化能力,Visual Token Matching绝对值得尝试。现在就加入这个项目,开启你的通用少样本学习之旅吧!


点击这里 查看完整项目,开始你的实验!

引用该项目时,请考虑添加以下参考文献:

@inproceedings{kim2023universal,
  title={Universal Few-shot Learning of Dense Prediction Tasks with Visual Token Matching},
  author={Donggyun Kim and Jinwoo Kim and Seongwoong Cho and Chong Luo and Seunghoon Hong},
  booktitle={International Conference on Learning Representations},
  year={2023},
  url={https://openreview.net/forum?id=88nT0j5jAn}
}

感谢 National Research Foundation of Korea (NRF) 对此开源代码开发的部分资助。

visual_token_matching[ICLR'23 Oral] Universal Few-shot Learning of Dense Prediction Tasks with Visual Token Matching项目地址:https://gitcode.com/gh_mirrors/vi/visual_token_matching

智慧消防安全与应急管理是现代城市安全管理的重要组成部分,随着城市化进程的加速,传统消防安全管理面临着诸多挑战,如消防安全责任制度落实不到位、消防设施日常管理不足、消防警力不足等。这些问题不仅制约了消防安全管理水平的提升,也给城市的安全运行带来了潜在风险。然而,物联网和智慧城市技术的快速发展为解决这些问题提供了新的思路和方法。智慧消防作为物联网和智慧城市技术结合的创新产物,正在成为社会消防安全管理的新趋势。 智慧消防的核心在于通过技术创新实现消防安全管理的智能化和自动化。其主要应用包括物联网消防安全监管平台、城市消防远程监控系统、智慧消防平台等,这些系统利用先进的技术手段,如GPS、GSM、GIS等,实现了对消防设施的实时监控、智能巡检和精准定位。例如,单兵定位方案通过信标点定位和微惯导加蓝牙辅助定位技术,能够精确掌握消防人员的位置信息,从而提高救援效率和安全性。智慧消防不仅提升了消防设施的管理质量,还优化了社会消防安全管理资源的配置,降低了管理成本。此外,智慧消防的应用还弥补了传统消防安全管理中数据处理方式落后、值班制度执行不彻底等问题,赋予了建筑消防设施智能化、自动化的能力。 尽管智慧消防技术在社会消防安全管理工作中的应用已经展现出巨大的潜力和优势,但目前仍处于实践探索阶段。相关职能部门和研究企业需要加大研究开发力度,进一步完善系统的功能与实效性。智慧消防的发展既面临风险,也充满机遇。当前,社会消防安全管理工作中仍存在制度执行不彻底、消防设施日常维护不到位等问题,而智慧消防理念与技术的应用可以有效弥补这些弊端,提高消防安全管理的自动化与智能化水平。随着智慧城市理念的不断发展和实践,智慧消防将成为推动社会消防安全管理工作与城市化进程同步发展的关键力量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卢颜娜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值