ClassEval:引领类级别代码生成的新标杆

ClassEval:引领类级别代码生成的新标杆

ClassEval Benchmark ClassEval for class-level code generation. ClassEval 项目地址: https://gitcode.com/gh_mirrors/cl/ClassEval

项目介绍

ClassEval 是由复旦大学软件工程实验室(FudanSELab)精心打造的首个类级别代码生成基准测试,旨在评估大型语言模型(LLMs)在类级别代码生成任务中的表现。该项目基于论文 "ClassEval: A Manually-Crafted Benchmark for Evaluating LLMs on Class-level Code Generation" 开发,自2023年8月首次发布以来,已迅速成为评估类级别代码生成能力的权威工具。

ClassEval 包含了100个手工构建的类级别Python编码任务,涵盖了从管理系统到自然语言处理等多个领域,确保了任务的多样性和复杂性。每个任务平均包含33.1个测试用例,为模型提供了全面的评估环境。

项目技术分析

ClassEval 不仅提供了丰富的数据集,还设计了三种不同的生成策略来评估模型的能力:

  1. 整体生成(Holistic Generation):模型一次性生成整个类代码,考验其处理复杂任务的能力。
  2. 增量生成(Incremental Generation):模型逐个方法生成代码,模拟软件开发的渐进过程。
  3. 组合生成(Compositional Generation):模型独立生成每个方法,最后组合成完整的类,模拟实际编程场景。

此外,ClassEval 还支持两种采样方法:核采样(nucleus sampling)和贪婪采样(greedy sampling),以评估模型在不同条件下的表现。

项目及技术应用场景

ClassEval 适用于以下场景:

  • 学术研究:研究人员可以使用 ClassEval 来评估和比较不同大型语言模型在类级别代码生成任务中的表现。
  • 工业应用:开发团队可以利用 ClassEval 来测试和优化其代码生成模型,确保其在实际应用中的可靠性和效率。
  • 教育培训:教育机构可以使用 ClassEval 来设计编程课程,帮助学生理解和掌握类级别代码生成的复杂性。

项目特点

  • 手工构建的数据集:ClassEval 的数据集由专家手工构建,确保了任务的多样性和复杂性,为模型提供了高质量的评估环境。
  • 多样化的生成策略:通过三种不同的生成策略,ClassEval 全面评估了模型在不同编程场景下的表现。
  • 易于使用的接口:ClassEval 提供了详细的文档和示例代码,用户可以轻松上手,快速进行模型评估。
  • Hugging Face 支持:ClassEval 已集成到 Hugging Face 平台,用户可以直接加载数据集,进行进一步的分析和实验。

结语

ClassEval 不仅是一个基准测试工具,更是推动类级别代码生成技术发展的重要力量。无论你是研究人员、开发者还是教育工作者,ClassEval 都能为你提供强大的支持,帮助你更好地理解和应用类级别代码生成技术。立即访问 ClassEval GitHub 仓库,开始你的探索之旅吧!

ClassEval Benchmark ClassEval for class-level code generation. ClassEval 项目地址: https://gitcode.com/gh_mirrors/cl/ClassEval

内容概要:本文将金属腐蚀现象比作游戏角色受到持续伤害(debuff),并采用浓度迁移和损伤方程来建模这一过程。文中首先介绍了浓度迁移的概念,将其比喻为游戏中使角色持续掉血的毒雾效果,并展示了如何利用Numpy矩阵存储浓度场以及通过卷积操作实现浓度扩散。接着引入了损伤方程,用于评估材料随时间累积的损伤程度,同时考虑到材料自身的抗性特性。作者还提供了完整的Python代码示例,演示了如何在一个二维网格环境中模拟24小时内金属表面发生的腐蚀变化,最终得到类似珊瑚状分形结构的腐蚀形态。此外,文章提到可以通过调整模型参数如腐蚀速率、材料抗性等,使得模拟更加贴近实际情况。 适合人群:对材料科学、物理化学感兴趣的科研工作者和技术爱好者,尤其是那些希望通过编程手段深入理解金属腐蚀机制的人群。 使用场景及目标:适用于希望借助数值模拟方法研究金属腐蚀行为的研究人员;可用于教学目的,帮助学生更好地掌握相关理论知识;也可作为工程项目前期评估工具,预测不同条件下金属构件可能遭受的腐蚀损害。 阅读建议:由于文中涉及较多数学公式和编程细节,建议读者具备一定的Python编程基础以及对线性代数有一定了解。对于想要进一步探索该领域的学者来说,可以尝试修改现有代码中的参数设置或者扩展模型维度,从而获得更丰富的研究成果。
基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目),个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(
小区物业管理系统是一款基于.NET平台开发的软件应用,用于全面管理住宅小区的日常运营。它通过多种功能提升物业管理效率、优化服务质量,并促进业主与物业之间的沟通。在设计过程中,该系统采用了UML(统一建模语言)来确保其结构化和可维护性。UML是一种标准化的建模工具,通过图形化方式描述系统的结构与行为,帮助开发者理解和实现复杂的软件项目。 本项目涵盖了UML的十大模型图,包括用例图、类图、对象图、序列图、协作图、状态图、活动图、组件图、部署图和包图。这些模型图从不同角度描绘系统,例如用例图展示参与者(如业主、物业人员)与系统功能的交互;类图定义系统中的类、接口及其关系;对象图是类图的实例;序列图和协作图描述对象间的动态交互;状态图和活动图关注行为变化;组件图和部署图关注物理结构;包图则用于组织模块结构。 压缩包中的“杨平.doc”可能是设计者或项目负责人杨平的工作文档,包含项目需求、设计思路等重要信息。“任务书.doc”应明确项目的具体任务要求,如功能需求和性能指标。“小区物业管理系统.mdl”是UML模型文件,记录了系统的详细设计。“小区物业”可能是其他相关文件,如源代码或数据库脚本。整个项目提供了从需求分析到系统实现的完整流程,对于学习.NET开发和理解UML建模技术具有重要参考价值。开发者通过研究这些模型图,能够更好地构建类似的物业管理系统,提升软件工程实践能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

平依佩Ula

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值