自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(26)
  • 收藏
  • 关注

原创 【论文研读】BiasLens:揭秘大模型角色扮演中的隐秘偏见

该论文提出了一种名为BiasLens的公平性测试框架,专门用于检测大型语言模型(LLMs)在角色扮演场景中的社会偏见。BiasLens通过自动生成多样化的社会角色和有针对性的问题,结合规则基和LLM基的策略来识别偏见,并经过人工评估验证其可靠性。论文对六个先进LLMs进行了大规模评估,揭示了角色扮演中偏见的普遍性,并发现去除角色扮演声明后,LLMs的偏见响应显著减少。这项研究不仅提供了关于LLMs在角色扮演中偏见的新见解,还通过公开基准数据集和实验结果,促进了该领域的进一步研究。

2025-01-23 15:07:31 1226

原创 【论文研读】U-DiTs:在U型扩散Transformer中引入下采样Token,以更低计算成本超越DiT-XL/2

这篇论文提出了一种新的U型扩散Transformer模型(U-DiT),该模型通过对自注意力机制中的查询、键和值进行下采样,有效减少了计算冗余,同时提高了性能。论文中的研究不仅包含理论分析和实验验证,还展示了U-DiT模型在图像生成任务上的优越表现,能够以更低的计算成本超越现有的DiT模型。

2024-12-20 14:39:21 766

原创 【论文研读】『草台班子』开发者的末日?敏捷开发遇上AI:人机协同软件生成新范式,让代码更懂用户心

该论文提出了一种基于敏捷方法的生成式软件开发框架——AgileGen,通过人类与AI协作来增强软件开发过程。该框架首次将敏捷开发理念与生成式软件开发相结合,通过引入Gherkin语言来补充用户需求的验收标准,从而确保生成的软件满足用户的隐式需求。论文在40个Web项目和SRDD数据集上进行了实验,结果表明AgileGen在功能完整性、用户满意度和生成效率方面均优于现有方法。此外,AgileGen还通过引入记忆池机制和一致性因子,提高了生成代码的可靠性和一致性。

2024-12-20 14:25:15 1061

原创 【论文研读】只用大模型写代码就够了?复旦发布ClassEval,首次评估LLMs类级别代码生成能力,结果喜忧参半

这篇文章提出了一个新颖的代码生成基准测试ClassEval,专注于类级别的代码生成,这是现有基准测试中较少涉及的领域。文章详细描述了ClassEval的构建过程,并通过实验评估了11种最先进的大型语言模型在类级别代码生成任务上的表现。研究发现,尽管GPT模型在类级别代码生成上仍表现出色,但所有模型在该任务上的性能均显著低于函数级别的代码生成。

2024-12-12 10:59:33 1353

原创 【论文研读】你的LLM供应链有风险!LLM供应链风险大揭秘:复旦团队详解构成、风险与应对策略

这篇论文全面探讨了大型语言模型(LLM)供应链的风险及其缓解措施,为大模型领域的研究提供了一个新颖的视角。文章不仅详细描述了LLM供应链的组成部分、利益相关者以及供应链中的风险类型,还提供了具体的风险缓解策略。这些内容对于理解和保障LLM在实际应用中的安全性和可靠性至关重要。此外,论文引用了大量学术文献和在线资源,具有较高的权威性和参考价值。因此,这篇论文无疑是大模型领域最新的研究成果,对于推动该领域的发展具有重要意义。

2024-12-11 13:02:36 586

原创 【论文研读】解锁LLM推理潜能!推理边界框架RBF量化优化链式思考CoT

在人工智能领域,大型语言模型(LLMs)如GPT系列、PaLM和LlaMa等已成为研究的热点。这些模型在各类任务中展现出强大的能力,尤其是在复杂推理任务中。近年来,Chain-of-Thought(CoT)推理作为一种提升LLMs推理能力的方法,受到了广泛关注。CoT通过让模型逐步阐述推理过程,显著提高了模型在复杂任务中的预测准确性。然而,尽管CoT推理取得了显著进展,现有研究仍面临两大挑战:一是缺乏量化指标来评估CoT能力,二是缺乏优化CoT性能的指导。这两大挑战限制了CoT研究的深入发展和实际应用。

2024-12-11 11:36:46 917

原创 【论文研读】MPO新突破!上海AI实验室强化多模态大语言模型链式思考推理能力

多模态大语言模型(MLLMs)在预训练和监督微调(SFT)的训练范式下,已经在多个领域和任务中取得了显著成就。然而,这些模型在链式思考(CoT)推理方面的表现却不尽如人意,尤其是在处理多模态数据时。为了克服这一挑战,上海人工智能实验室的研究团队提出了一种基于混合偏好优化(MPO)的新方法,旨在通过自动化偏好数据构建管道和创新的训练策略,提升MLLMs的多模态推理能力。

2024-12-09 16:08:09 1304

原创 【论文研读】LLMs知识边界大考:检索增强能否让它们更自知?

今天,我们深入剖析一项来自中国人民大学高瓴人工智能学院和百度联合研究的新成果,该研究聚焦于大型语言模型(LLMs)在开放域问答任务中的知识边界感知能力,并通过检索增强技术进行了深入探讨。

2024-12-09 14:33:13 1083

原创 【论文研读】浙大提出MSHyper:多尺度超图Transformer解锁时间序列预测新高度

时间序列预测中的多尺度交互建模是提升预测精度的关键。然而,传统方法在处理不同时间尺度模式间的复杂交互时显得力不从心。浙江大学的研究团队提出了MSHyper框架,通过引入多尺度超图结构和三阶段信息传递机制,有效建模了时间序列中不同尺度模式间的高阶交互,实现了预测精度的显著提升。该成果在五个真实数据集上的实验验证了其卓越性能,为长时间序列预测领域树立了新的标杆。**在时间序列预测领域,如何精准捕捉并建模不同时间尺度模式间的复杂交互,一直是提升预测精度的关键。

2024-12-09 11:05:00 1680

原创 【论文研读】RAG系统评估难题迎来新解!马萨诸塞大学提出eRAG,文档级评估让检索质量一目了然

本文介绍了一种新颖的评估方法——eRAG,该方法通过利用大型语言模型(LLM)对检索列表中的每个文档进行单独评估,从而生成文档级别的相关性标签,有效提高了评估效率与准确性。

2024-12-06 16:59:21 778

原创 【论文研读】告别碎片化代码!复旦提出CodeGen4Libs,两阶段精准生成第三方库代码

现有的代码生成技术大多只能生成独立的功能代码,难以在生成代码时考虑特定的第三方库。复旦大学的研究团队提出了一种新的面向库的代码生成方法CodeGen4Libs,通过两个阶段——导入生成和代码生成,显著提高了生成代码的准确性和一致性。

2024-12-06 16:29:03 651

原创 前端EventSource收不到流数据及EventSource的onmessage不执行问题

解决前端接收服务器发送的数据时EventSource的onmessage不执行的问题

2023-05-16 10:37:52 9536 14

转载 Maven显示的jdk版本与环境变量设置的jdk版本不一致的一种解决方案

Maven默认jdk版本与设置的jdk版本不一致的一种解决方案

2022-11-16 15:28:13 1283

原创 IDEA插件开发资料汇总

用于推荐一些写的比较好的博客,是IDEA插件开发内容

2022-10-14 15:10:05 585

原创 IDEA删除已经废弃不用的jdk选项

IDEA删除无用、已经废弃的JDK

2022-09-23 16:39:36 1546

原创 VSCode的Run Code和Run Python File的关系

问题在VSCode新建了一个项目,用VSCode运行Python代码时,发现有如下几个选项:直接点击这个三角形的话,默认执行的是第一项Run Code。但如果Python代码需要依赖于指定的虚拟环境,直接点击Run Code运行的话,会发现代码的输出结果是在控制台的Output框里面,而非Terminal框,此时就会报错环境问题:看了一下,我已经在Settings里面通过Select Python Interpreter配置过我自己指定的虚拟环境了:此时如果我点Run Python File

2022-04-11 11:18:23 13542 15

转载 Precision和Recall的计算方法

https://www.cnblogs.com/pprp/p/11241954.html

2022-03-30 16:12:21 870

原创 Conda配置清华源加速安装Python包(2021.11最新版)

本教程适用范围本教程**适用于64位windows操作系统。**其他操作系统可以根据本教程的思路以此类推,探索配置方法。起因目前网上给Conda配置清华源的教程很多,但是由于网上信息新老版本参差不齐,有的是几年前的,清华源早就换了url,加之清华源本身也很拉胯,常常会出现大家下载了conda,使用默认的下载路径下载太慢、配置了清华源又根本下载不了的问题。本教程保证配置之后百分之百可以快速安装conda包。配置方法首先点电脑上的开始–>Anaconda Prompt,打开conda命令行,然

2021-11-06 20:23:34 6789 6

原创 VMware ubuntu系统共享windows文件夹出现permission denied权限问题

问题重述vmware里面设置共享文件夹,但是mnt/hgfs这个目录要么就没有,要么就是permission denied,命令加sudo也没用。网上说的chomd 777那些解决办法都没用。解决方法用这个博客内容可以解决:解决VMware中共享文件夹hgfs的权限问题或者这个CSDN写的也可以:VMware虚拟机中共享文件夹hgfs缺失或权限有问题打不开上述博客要求查看自己的uid和gid,可以根据这个博客输入命令id查看:Linux使用id命令查看显示目前登陆账户的uid和gid及所

2021-09-28 13:58:59 1827

原创 networkx加载gml图数据集文件报错:etworkx.exception.NetworkXError: node #0 has no ‘label‘ attribute

问题来源最近在研究图神经网络相关的内容,刚开始入门,下载了空手道俱乐部网络数据集karate_club_graph,我下载下来是一个karate.gml文件。起初首先用netwokx.read_gml()加载文件:import networkx as nxG = nx.read_gml("karate.gml") #读取空手道俱乐部图网络数据运行程序,报错如下:etworkx.exception.NetworkXError: node #0 has no ‘label’ attribut

2021-08-24 10:57:14 1352 1

原创 二手车交易价格预测代码全解析(三)特征工程与缺失值处理

路漫漫其修远兮,吾将上下而求索。缺失值处理思路先回顾一下第二节的内容。第二节我们讲到特征构造,不但分析了特征之间的相关性、删除了没有用的特征,还构造了一些新的特征。比如used_time(使用时长)、brand_and_price_mean(品牌与价格)等。我们在构造新的特征的时候,就将新特征中的缺失值用fillna()函数补充上了。但也要注意到,我们原有的特征列还存在很多缺失值,需要进行处理。这里的思路是:(1)缺失的数量很少:直接用中位数或者平均值代替。(2)缺失的数量很多:用机器学习模型.

2021-03-31 11:32:32 1212

原创 二手车交易价格预测代码全解析(二)数据分析与特征工程

查看缺失值和重复值在这里说一下哪些算缺失值。比如某一列明明该有一个数,但是却压根就没有数。这会导致程序运行的时候报错,提示无法转换NaN(Not a Number)。天池给的这数据集里缺失值特别多,刚开始跑程序的时候到处都报错NaN。所以查看一下缺失值情况是必要的,下面代码用来查看缺失值和重复值:missing=data_all.isnull().sum()missing=missing[missing>0]print(missing)print(data_all['bodyType'].

2021-03-30 17:57:24 1387 1

原创 二手车交易价格预测代码全解析(一)背景介绍与数据集加载

背景介绍这两天开始研究天池上面的数据挖掘入门比赛:二手车交易价格预测。本来觉得是一个比较简单的项目吧,套用一下keras解决波士顿房价回归预测的模型,写一个简单的神经网络把数据输入进去,就可以了。因此我一直以为深度学习的基本步骤是:(1)数据准备(2)模型选择&模型开发(3)模型评估(evaluate)(4)模型预测(5)模型调优(调参)万万没想到啊,这个二手车交易价格预测,要想预测得准确,就要优化基本的机器学习方法。个人觉得和深度学习比起来,机器学习太难了,难在他底层全都是数学。整

2021-03-30 11:53:40 3202

原创 jquery报错 $(‘....‘).lazyload is not a function解决方法

从网上找了两个html模板,想把两个网站合在一起。但是两个网站都有各自的样式。当时就简单粗暴地把所有Uncaught TypeError: $(...).lazyload is not a function at HTMLDocument.<anonymous> (d4cff3922527a903.js:3904) at j (d4cff3922527a903.js:12) at Object.fireWith [as resolveWith] (d4cff392252

2021-03-23 10:37:34 1426 1

转载 如何用HTML制作出在线编程平台的前端界面(代码框、提交等待等模块的代码实现)

转载:https://www.jianshu.com/p/f9dca2780db2

2021-02-16 23:02:44 1006

原创 如何通过github用户名找到该用户的邮箱

在浏览器输入:https://api.github.com/users/Username/events/public把Username替换成你想查询的那个用户的github用户名即可。

2021-01-23 11:33:53 10523 3

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除