自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(44)
  • 收藏
  • 关注

原创 跟曹操学「管理」

读史到建安五年十月,官渡。曹操与袁绍对峙已数月,粮草将尽,士卒疲乏。一封许都来信更添压力:后方许多官员与袁绍暗通书信,人心浮动。仗打赢了,一切好说;若输,便是满盘皆输。终于,奇袭乌巢,大火冲天,袁绍溃败。清理战场时,从袁绍营中缴获一箱竹简。打开,全是曹营中人昔日写给袁绍的密信,言辞恭顺,以为后路。帐中一片死寂。有人进言:“可逐一点对姓名,收而杀之。”曹操沉默良久,下令:“当绍之强,孤犹不能自保,而况众人乎?”他命人当众将竹简付之一炬。火焰腾起,照亮了将领们惊疑、后怕、最终如释重负的脸。那一把火,烧掉的不是通

2026-01-08 09:55:56 577

原创 RAG如何解决长文档chunking的信息丢失问题?

目前,RAG中的Chunking技术已经从传统的固定分块发展到更加智能的分块策略。Late Chunking和Agentic Chunking代表了两种不同的技术路线:前者通过改变嵌入流程来保留上下文信息,后者通过LLM的智能判断来优化分块策略。从实际应用效果来看,这些方法在提高检索准确性和生成质量方面取得了显著成果。例如,Late Chunking在柏林示例中将相似度从0.708提升到0.825;Agentic Chunking在法律合同分析场景中将召回率从68%提升到85%。

2026-01-06 21:57:00 842

原创 风雨张居正

风雨张居正。

2026-01-06 21:53:43 55

原创 跟三国名将朱然学「胆守」

工作之余的思考:跟三国名将朱然学「胆守」可能是职业生涯的规划路径,可能是一段需要用心经营的关系,也可能是内心深处不容践踏的价值准则。同行业的朋友最近跟我吐槽,说自己就像个现代版守城将领——守的不是城池,而是。“我们组就五个人,对面产品经理带着运营、市场,十几号人天天‘攻城’,”他苦笑着说,“需求像箭雨一样飞过来,我就在工位这‘城头’上,一边修 bug 这‘城墙’,一边说‘这个迭代做不完,真的做不完’。我突然想到,这可不就是某种意义上的“胆守”吗?

2025-12-25 21:32:33 547

原创 用「番茄工作法」提升AI能力和工作效率

番茄工作法是一种‌「时间切割术」,用25分钟高度专注的工作+5分钟强制休息的循环(称为一个“番茄钟”),把时间变成可量化的战斗单元,专治拖延症和注意力涣散。它起源于‌20世纪80年代末‌,最早由意大利人弗朗西斯科·西里洛(Francesco Cirillo)发明。他在大学期间为克服学习拖延症,尝试用厨房计时器管理时间‌。方法名称直接来源于其使用的‌番茄形计时器‌外观,而非普通番茄(tomato)的英文名称‌。需要注意的是,番茄工作法不是时间管理工具,而是‌程序员认知资源的调度算法。

2025-12-25 21:30:54 621

原创 Transformer为什么使用多个注意力头?

Transformer为什么使用多个注意力头?单头注意力如同用单一滤镜观察数据,难以同时捕捉语法、语义、指代等异构特征。多头机制通过,实现了的效果,在几乎不增加计算量的前提下显著提升模型容量在 Transformer 中,Multi-Head Attention(多头注意力机制) 是对 Self-Attention(自注意力机制)的拓展与增强,是模型理解复杂语言结构的关键技术之一。今天我们系统地讲清楚 为什么使用 Multi-Head Attention、它的计算方式和背后的原理。

2025-12-25 21:29:18 997

原创 RAG中的上下文压缩(Contextual Compression)

上下文压缩,就是在RAG检索后,把无关内容“剪掉”,只留下和问题最相关的部分。这里的“压缩”既指压缩单个文档的内容,也指批量过滤文档。我们可以使用给定查询的上下文来压缩它们,以便只返回相关信息,而不是立即按原样返回检索到的文档。减少噪声:让大模型只看到有用的信息。提升准确率:答案更聚焦、更靠谱。节省上下文窗口:能处理更长的文档,成本更低。Selective(选择性保留)只保留和问题直接相关的句子/段落,原文照抄,不做改写。Summary(摘要压缩)把相关内容浓缩成简明扼要的摘要,信息密度高。

2025-12-25 21:26:32 1030

原创 唐军收复两京之战:安史之乱中,大唐如何逆转绝境?

唐军收复两京之战:安史之乱中,大唐如何逆转绝境?国产动漫《长安三万里》里,高适站在城楼上眺望的长安,是“春风得意马蹄疾”的盛世繁华——朱雀大街上胡商的驼铃、曲江池畔仕女的笑谈、大明宫的金瓦流光,构成了大唐最耀眼的剪影。可动画结尾那组快速切换的画面里,燃烧的城郭、逃难的百姓、断裂的旌旗,却道尽了盛世崩塌的残酷。这不是艺术夸张,而是天宝十四载(755年)安史之乱爆发后,两京(长安、洛阳)的真实写照。

2025-12-16 12:45:00 884

原创 别拿agent骗人说自己是model

把简单规则引擎包装成智能体,正成为当前AI行业最流行的“皇帝新装”当我在技术评审会上看到又一个“基于LLM的智能决策系统”时,忍不住在心中叹了口气。那套系统只不过是将几个API调用串联起来,加上几个if-else规则,却被冠以“自主智能体”的名号在路演PPT上闪闪发光。这场景已经上演过太多次了。从去年开始,“Agent”成了AI圈最时髦的词汇之一,似乎不给自己的模型贴个“Agent”标签,都不好意思说自己在做前沿AI。

2025-12-15 09:42:17 664

原创 快速自定义一个带进度监控的文件资源类

快速自定义一个带进度监控的文件资源类在平时开发中,我们常常会遇到一些需要调用接口,使用form-data方式向接口上传本地文件的request操作。今天记录一个好用的带进度监控的文件资源管理类的开发,实现代码如下:在现有代码中的集成方式可以很方便地在我们已有的代码里面调用它:实现效果示例当上传一个100MB的PDF文件时,控制台会输出:实现原理剖析自定义Resource类:进度监控流:回调机制:2. 线程安全处理(适用于UI更新)3. 上传速度计算生产环境注意事项性能优化:异

2025-12-14 22:45:00 346

原创 记录从PHP到Java的开发重构的一些经验和可能的升级方案

从PHP到Java的开发重构的一些经验和可能的升级方案。

2025-12-12 00:45:00 614

原创 为什么SFT之后仍需要RLHF?

RLHF 技术为解决大模型与人类需求对齐的问题提供了有效方案,它通过将人类偏好融入强化学习过程,使模型不仅能完成任务,还能以符合人类期望的方式完成任务。从技术角度看,RLHF 连接了监督学习、强化学习和人类反馈,形成了一个完整的闭环优化系统。显著提升用户体验和满意度使 AI 系统更好地符合业务需求和品牌调性降低人工审核和修改成本有效管理 AI 系统的风险和合规性减少对人类反馈的依赖,结合更多客观指标开发更高效的强化学习算法,降低训练成本实现多目标 RLHF,同时优化多个维度的表现。

2025-12-11 14:52:34 790

原创 SpringBoot中的命名与开发规范

通常是根据其在项目中的角色和职责来确定的。平时开发项目,经常对于这些类名的命名有疑惑,所以记录下来。这些命名约定有助于提高代码的可读性和可维护性。在 Spring Boot 项目开发中,Java 类的命名(如。SpringBoot中的命名与开发规范。

2025-12-11 14:46:35 545

原创 互联网打工人生存之道:八千里外拦截“战争”

真正的危机,往往在八千里外就已启程,等它兵临城下,你连穿盔甲的时间都没有。真正的护城河,是你下班后还能静下心读完的一章书,是你在项目失败后复盘出的三个教训,是你愿意花三个月学一个冷门但关键的工具,哪怕它暂时用不上。不是炮火,是裁员名单。真正能救你于水火的,是那个愿意在你失业时介绍内推的人,是那个深夜陪你改方案的前同事,是那个知道你能力底牌、敢为你担保的朋友。真正的安全,从来不是别人给的,是你在无人注视时,悄悄为自己筑起的城墙。真正的安全,从来不是别人给的,是你在无人注视时,悄悄为自己筑起的城墙。

2025-12-05 10:53:39 364

原创 一文通透大模型微调 (Fine-Tuning)

模型微调不仅是模型“听懂你”的第一步,更是企业打造私有智能体的核心环节。懂得 Prompt 是入门,会微调,才是真正走向 AI 工程师的开始。大模型微调技术已经成为人工智能领域的核心技术之一,它使预训练模型能够更好地适应各种特定任务和领域。从全量微调到参数高效微调,再到指令微调,技术的不断进步使我们能够在资源有限的情况下获得更好的模型性能。在实际应用中,选择合适的微调技术需要综合考虑模型大小、数据量、任务类型和资源限制等因素。企业可以根据自身需求,利用微调技术构建高性能的 AI 系统,解决实际业务问题。

2025-12-05 00:15:00 968

原创 LoRA的低本征秩(intrinsic rank)是什么?

LoRA的低本征秩(intrinsic rank)

2025-12-04 19:45:00 557

原创 RAG、LangChain、Agent 到底有啥关系?

LangChain不是某种技术,而是一个“为大模型系统开发提供标准组件和框架的工具集”。核心定位:LangChain 是一个用来构建“具备推理能力 + 工具使用 + 记忆能力 + 可编排能力”的 LLM 应用的开发框架。是一种让大模型“使用外部知识”的方法,尤其适合“企业知识问答”类场景。模型不知道的知识,让它去查。大模型并不是实时联网的,参数里也不可能包含所有你企业的文档或数据库。那么怎么让它回答你公司业务相关的问题呢?RAG 就是解决这个问题的方法。用户问题↓向量化检索(搜索本地知识库)↓。

2025-12-04 13:17:44 766

原创 大模型与思维链 (Chain of Thoughts) 技术解析

在传统的语言模型(如 GPT、T5)生成过程中,我们常常只看到“输入-输出”模式:给出问题,模型直接给答案。想一下题意,然后做拆解,接着逐步推理,最后才得到答案。这种“分步骤思考”的过程,其实就是“思维链(Chain of Thought, CoT)思维链通过引导语言模型像人类一样“分步骤地思考”,极大提升了模型处理**多步推理任务(multi-step reasoning)**的能力,特别在数学题、逻辑题、复杂问答等任务中效果显著提升。

2025-12-04 13:11:40 1009

原创 【论文研读】BiasLens:揭秘大模型角色扮演中的隐秘偏见

该论文提出了一种名为BiasLens的公平性测试框架,专门用于检测大型语言模型(LLMs)在角色扮演场景中的社会偏见。BiasLens通过自动生成多样化的社会角色和有针对性的问题,结合规则基和LLM基的策略来识别偏见,并经过人工评估验证其可靠性。论文对六个先进LLMs进行了大规模评估,揭示了角色扮演中偏见的普遍性,并发现去除角色扮演声明后,LLMs的偏见响应显著减少。这项研究不仅提供了关于LLMs在角色扮演中偏见的新见解,还通过公开基准数据集和实验结果,促进了该领域的进一步研究。

2025-01-23 15:07:31 1464

原创 【论文研读】U-DiTs:在U型扩散Transformer中引入下采样Token,以更低计算成本超越DiT-XL/2

这篇论文提出了一种新的U型扩散Transformer模型(U-DiT),该模型通过对自注意力机制中的查询、键和值进行下采样,有效减少了计算冗余,同时提高了性能。论文中的研究不仅包含理论分析和实验验证,还展示了U-DiT模型在图像生成任务上的优越表现,能够以更低的计算成本超越现有的DiT模型。

2024-12-20 14:39:21 962

原创 【论文研读】『草台班子』开发者的末日?敏捷开发遇上AI:人机协同软件生成新范式,让代码更懂用户心

该论文提出了一种基于敏捷方法的生成式软件开发框架——AgileGen,通过人类与AI协作来增强软件开发过程。该框架首次将敏捷开发理念与生成式软件开发相结合,通过引入Gherkin语言来补充用户需求的验收标准,从而确保生成的软件满足用户的隐式需求。论文在40个Web项目和SRDD数据集上进行了实验,结果表明AgileGen在功能完整性、用户满意度和生成效率方面均优于现有方法。此外,AgileGen还通过引入记忆池机制和一致性因子,提高了生成代码的可靠性和一致性。

2024-12-20 14:25:15 1220

原创 【论文研读】只用大模型写代码就够了?复旦发布ClassEval,首次评估LLMs类级别代码生成能力,结果喜忧参半

这篇文章提出了一个新颖的代码生成基准测试ClassEval,专注于类级别的代码生成,这是现有基准测试中较少涉及的领域。文章详细描述了ClassEval的构建过程,并通过实验评估了11种最先进的大型语言模型在类级别代码生成任务上的表现。研究发现,尽管GPT模型在类级别代码生成上仍表现出色,但所有模型在该任务上的性能均显著低于函数级别的代码生成。

2024-12-12 10:59:33 1658

原创 【论文研读】你的LLM供应链有风险!LLM供应链风险大揭秘:复旦团队详解构成、风险与应对策略

这篇论文全面探讨了大型语言模型(LLM)供应链的风险及其缓解措施,为大模型领域的研究提供了一个新颖的视角。文章不仅详细描述了LLM供应链的组成部分、利益相关者以及供应链中的风险类型,还提供了具体的风险缓解策略。这些内容对于理解和保障LLM在实际应用中的安全性和可靠性至关重要。此外,论文引用了大量学术文献和在线资源,具有较高的权威性和参考价值。因此,这篇论文无疑是大模型领域最新的研究成果,对于推动该领域的发展具有重要意义。

2024-12-11 13:02:36 866

原创 【论文研读】解锁LLM推理潜能!推理边界框架RBF量化优化链式思考CoT

在人工智能领域,大型语言模型(LLMs)如GPT系列、PaLM和LlaMa等已成为研究的热点。这些模型在各类任务中展现出强大的能力,尤其是在复杂推理任务中。近年来,Chain-of-Thought(CoT)推理作为一种提升LLMs推理能力的方法,受到了广泛关注。CoT通过让模型逐步阐述推理过程,显著提高了模型在复杂任务中的预测准确性。然而,尽管CoT推理取得了显著进展,现有研究仍面临两大挑战:一是缺乏量化指标来评估CoT能力,二是缺乏优化CoT性能的指导。这两大挑战限制了CoT研究的深入发展和实际应用。

2024-12-11 11:36:46 1060

原创 【论文研读】MPO新突破!上海AI实验室强化多模态大语言模型链式思考推理能力

多模态大语言模型(MLLMs)在预训练和监督微调(SFT)的训练范式下,已经在多个领域和任务中取得了显著成就。然而,这些模型在链式思考(CoT)推理方面的表现却不尽如人意,尤其是在处理多模态数据时。为了克服这一挑战,上海人工智能实验室的研究团队提出了一种基于混合偏好优化(MPO)的新方法,旨在通过自动化偏好数据构建管道和创新的训练策略,提升MLLMs的多模态推理能力。

2024-12-09 16:08:09 1659

原创 【论文研读】LLMs知识边界大考:检索增强能否让它们更自知?

今天,我们深入剖析一项来自中国人民大学高瓴人工智能学院和百度联合研究的新成果,该研究聚焦于大型语言模型(LLMs)在开放域问答任务中的知识边界感知能力,并通过检索增强技术进行了深入探讨。

2024-12-09 14:33:13 1173

原创 【论文研读】浙大提出MSHyper:多尺度超图Transformer解锁时间序列预测新高度

时间序列预测中的多尺度交互建模是提升预测精度的关键。然而,传统方法在处理不同时间尺度模式间的复杂交互时显得力不从心。浙江大学的研究团队提出了MSHyper框架,通过引入多尺度超图结构和三阶段信息传递机制,有效建模了时间序列中不同尺度模式间的高阶交互,实现了预测精度的显著提升。该成果在五个真实数据集上的实验验证了其卓越性能,为长时间序列预测领域树立了新的标杆。**在时间序列预测领域,如何精准捕捉并建模不同时间尺度模式间的复杂交互,一直是提升预测精度的关键。

2024-12-09 11:05:00 1900

原创 【论文研读】RAG系统评估难题迎来新解!马萨诸塞大学提出eRAG,文档级评估让检索质量一目了然

本文介绍了一种新颖的评估方法——eRAG,该方法通过利用大型语言模型(LLM)对检索列表中的每个文档进行单独评估,从而生成文档级别的相关性标签,有效提高了评估效率与准确性。

2024-12-06 16:59:21 893

原创 【论文研读】告别碎片化代码!复旦提出CodeGen4Libs,两阶段精准生成第三方库代码

现有的代码生成技术大多只能生成独立的功能代码,难以在生成代码时考虑特定的第三方库。复旦大学的研究团队提出了一种新的面向库的代码生成方法CodeGen4Libs,通过两个阶段——导入生成和代码生成,显著提高了生成代码的准确性和一致性。

2024-12-06 16:29:03 703

原创 前端EventSource收不到流数据及EventSource的onmessage不执行问题

解决前端接收服务器发送的数据时EventSource的onmessage不执行的问题

2023-05-16 10:37:52 10611 15

转载 Maven显示的jdk版本与环境变量设置的jdk版本不一致的一种解决方案

Maven默认jdk版本与设置的jdk版本不一致的一种解决方案

2022-11-16 15:28:13 1369

原创 IDEA插件开发资料汇总

用于推荐一些写的比较好的博客,是IDEA插件开发内容

2022-10-14 15:10:05 614

原创 IDEA删除已经废弃不用的jdk选项

IDEA删除无用、已经废弃的JDK

2022-09-23 16:39:36 1605

原创 VSCode的Run Code和Run Python File的关系

问题在VSCode新建了一个项目,用VSCode运行Python代码时,发现有如下几个选项:直接点击这个三角形的话,默认执行的是第一项Run Code。但如果Python代码需要依赖于指定的虚拟环境,直接点击Run Code运行的话,会发现代码的输出结果是在控制台的Output框里面,而非Terminal框,此时就会报错环境问题:看了一下,我已经在Settings里面通过Select Python Interpreter配置过我自己指定的虚拟环境了:此时如果我点Run Python File

2022-04-11 11:18:23 14958 16

转载 Precision和Recall的计算方法

https://www.cnblogs.com/pprp/p/11241954.html

2022-03-30 16:12:21 902

原创 Conda配置清华源加速安装Python包(2021.11最新版)

本教程适用范围本教程**适用于64位windows操作系统。**其他操作系统可以根据本教程的思路以此类推,探索配置方法。起因目前网上给Conda配置清华源的教程很多,但是由于网上信息新老版本参差不齐,有的是几年前的,清华源早就换了url,加之清华源本身也很拉胯,常常会出现大家下载了conda,使用默认的下载路径下载太慢、配置了清华源又根本下载不了的问题。本教程保证配置之后百分之百可以快速安装conda包。配置方法首先点电脑上的开始–>Anaconda Prompt,打开conda命令行,然

2021-11-06 20:23:34 7202 6

原创 VMware ubuntu系统共享windows文件夹出现permission denied权限问题

问题重述vmware里面设置共享文件夹,但是mnt/hgfs这个目录要么就没有,要么就是permission denied,命令加sudo也没用。网上说的chomd 777那些解决办法都没用。解决方法用这个博客内容可以解决:解决VMware中共享文件夹hgfs的权限问题或者这个CSDN写的也可以:VMware虚拟机中共享文件夹hgfs缺失或权限有问题打不开上述博客要求查看自己的uid和gid,可以根据这个博客输入命令id查看:Linux使用id命令查看显示目前登陆账户的uid和gid及所

2021-09-28 13:58:59 1968

原创 networkx加载gml图数据集文件报错:etworkx.exception.NetworkXError: node #0 has no ‘label‘ attribute

问题来源最近在研究图神经网络相关的内容,刚开始入门,下载了空手道俱乐部网络数据集karate_club_graph,我下载下来是一个karate.gml文件。起初首先用netwokx.read_gml()加载文件:import networkx as nxG = nx.read_gml("karate.gml") #读取空手道俱乐部图网络数据运行程序,报错如下:etworkx.exception.NetworkXError: node #0 has no ‘label’ attribut

2021-08-24 10:57:14 1436 1

原创 二手车交易价格预测代码全解析(三)特征工程与缺失值处理

路漫漫其修远兮,吾将上下而求索。缺失值处理思路先回顾一下第二节的内容。第二节我们讲到特征构造,不但分析了特征之间的相关性、删除了没有用的特征,还构造了一些新的特征。比如used_time(使用时长)、brand_and_price_mean(品牌与价格)等。我们在构造新的特征的时候,就将新特征中的缺失值用fillna()函数补充上了。但也要注意到,我们原有的特征列还存在很多缺失值,需要进行处理。这里的思路是:(1)缺失的数量很少:直接用中位数或者平均值代替。(2)缺失的数量很多:用机器学习模型.

2021-03-31 11:32:32 1275

原创 二手车交易价格预测代码全解析(二)数据分析与特征工程

查看缺失值和重复值在这里说一下哪些算缺失值。比如某一列明明该有一个数,但是却压根就没有数。这会导致程序运行的时候报错,提示无法转换NaN(Not a Number)。天池给的这数据集里缺失值特别多,刚开始跑程序的时候到处都报错NaN。所以查看一下缺失值情况是必要的,下面代码用来查看缺失值和重复值:missing=data_all.isnull().sum()missing=missing[missing>0]print(missing)print(data_all['bodyType'].

2021-03-30 17:57:24 1492 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除