探秘LeagueAI:基于PyTorch的英雄联盟AI玩家

探秘LeagueAI:基于PyTorch的英雄联盟AI玩家

LeagueAI LeagueAI software framework for League of Legends that provides information about the state of the game based on Image Recognition using OpenCV and Pytorch. 项目地址: https://gitcode.com/gh_mirrors/le/LeagueAI

LeagueAI

LeagueAI是一个创新的开源项目,它实现了一个能在《英雄联盟》中自动识别游戏图像的AI玩家。通过结合先进的深度学习模型和自动生成的训练数据,这个AI能够模拟人类玩家的游戏体验,带来前所未有的游戏自动化。

项目介绍

LeagueAI的核心是Yolo v3对象检测器的Python实现,该模型可以识别出游戏中如防御塔、小兵、特定英雄(比如薇恩)等关键元素。此外,项目还提供了一种无限生成随机训练数据的方法,以适应各种不同的游戏场景。

项目技术分析

该项目利用了PyTorch库来构建和训练对象检测模型。Yolo v3是一种高效的实时物体检测系统,能够在图像中快速准确地定位和分类目标。在LeagueAI项目中,这一模型被应用到《英雄联盟》的游戏截图上,实现对游戏中的实体进行智能识别。

为了应对没有官方API的情况,开发者从游戏3D模型中提取图像,并运用数据增强和领域随机化技术,生成了大量带有标签的真实感合成图片作为训练集。这种自动生成训练数据的方法大大节省了手动标注的时间,提升了模型的泛化能力。

应用场景

LeagueAI可广泛应用于游戏自动化、游戏数据分析、以及机器视觉研究等领域:

  • 游戏自动化:通过控制AI玩家,可以进行自动游戏测试、战术分析或游戏录像的生成。
  • 数据分析:AI可以收集大量游戏事件,为玩家行为分析、战术研究提供数据支持。
  • 机器视觉研究:项目提供了一个可用于物体检测与追踪的研究平台,有助于进一步优化算法。

项目特点

  • 高效的对象识别:基于Yolo v3的模型设计,能快速准确地识别人工智能所需的游戏对象。
  • 自动数据生成:无需大量手动标注工作,可以自动生成多样化的训练数据。
  • 灵活性高:项目框架允许开发人员构建自己的应用,例如添加新对象或调整识别策略。
  • 持续更新:尽管仍处于开发阶段,但项目团队将持续改进并开源相关资源,包括自定义训练权重和数据集。

演示视频: 点击此处观看

如果你对深度学习、游戏AI或机器视觉有兴趣,LeagueAI绝对值得你探索和贡献。参与项目,一起开启智能游戏的新篇章!


项目文档 [论文引用]: Struckmeier, Oliver. "LeagueAI: Improving object detector performance and flexibility through automatically generated training data and domain randomization." arXiv preprint arXiv:1905.13546 (2019).

让我们一起见证智能游戏的未来,加入LeagueAI的行列吧!

LeagueAI LeagueAI software framework for League of Legends that provides information about the state of the game based on Image Recognition using OpenCV and Pytorch. 项目地址: https://gitcode.com/gh_mirrors/le/LeagueAI

数据集介绍:野生动物目标检测数据集 一、基础信息 数据集名称:野生动物目标检测数据集 图片数量: - 训练集:4,181张图片 - 验证集:1,212张图片 - 测试集:610张图片 总计:6,003张航拍及自然场景图片 分类类别: 涵盖23类野生动物,包括: - 濒危物种(北极熊、犀牛、熊猫) - 大型哺乳动物(大象、河马、长颈鹿) - 猛禽类(鹰、鹦鹉、企鹅) - 食肉动物(狮子、猎豹、美洲豹) - 草食动物(斑马、鹿、山羊) 标注格式: YOLO格式标注,包含边界框坐标与类别标签,适配主流目标检测框架。 数据特性: 航拍视角与地面视角相结合,包含动物群体活动和个体行为场景。 二、适用场景 生态保护监测系统: 构建野生动物种群识别系统,支持自然保护区自动监测动物迁徙和栖息地活动。 智能林业管理: 集成至森林巡护无人机系统,实时检测濒危物种并预警盗猎行为。 动物行为研究: 为科研机构提供标注数据支撑,辅助研究动物种群分布与行为特征。 自然纪录片制作: AI预处理工具开发,快速定位视频素材中的特定物种片段。 教育科普应用: 用于野生动物识别教育软件,支持互动式物种学习功能开发。 三、数据集优势 物种覆盖全面: 包含非洲草原系、极地系、森林系等23类特色动物,特别涵盖10种IUCN红色名录物种。 多场景适配: 整合航拍与地面视角数据,支持开发不同观测高度的检测模型。 标注质量可靠: 经动物学专家校验,确保复杂场景(群体/遮挡)下的标注准确性。 模型兼容性强: 原生YOLO格式可直接应用于YOLOv5/v7/v8等系列模型训练。 生态研究价值: 特别包含熊科动物(棕熊/北极熊/熊猫)细分类别,支持濒危物种保护研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓬玮剑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值