推荐开源项目:Chord-Recognition - 自动和弦识别神器
去发现同类优质开源项目:https://gitcode.com/
在音乐创作和音频处理领域,精确的和弦识别是至关重要的一步。今天,我们向您推荐一款基于Python的开源项目——Chord-Recognition,它能自动从单音色或多音色音频中识别出和弦。借助先进的音频处理算法,这款工具将为您的音乐创作带来全新的便捷体验。
1、项目介绍
Chord-Recognition 是一个强大的自动化和弦检测工具,它利用了音乐理论与信号处理技术的结合。通过提取Pitch Class Profile(调类轮廓)特征,并基于Constant Q Transform(固定Q变换),可以有效地从音频中分离和识别出不同的和弦。项目提供了两种识别方法:模板匹配和隐马尔可夫模型(HMM),以适应不同类型的音乐素材。
2、项目技术分析
模板匹配
该方法借鉴了Kyogu Lee在2006年国际计算机音乐大会论文中的思想,通过计算输入音频的调类轮廓与预定义的24个大调和小调和弦模板的相关性,选取相关度最高的和弦作为识别结果。
隐马尔可夫模型(HMM)
这种方法基于Juan P. Bello在2005年ISMIR会议上的研究,通过训练符合音乐理论的HMM来估计多声部、复调音乐的和弦序列。Viterbi解码用于寻找最可能的和弦序列。
3、项目及技术应用场景
无论您是一位音乐制作人、音频工程师,还是音乐理论学者,Chord-Recognition 都能为您带来极大的便利:
- 在音乐创作过程中快速识别已有的旋律和弦,加速创作进程。
- 对歌曲进行和声分析,帮助理解作品结构和音乐情感。
- 教育场景下,辅助学生学习和弦识别,提升音乐素养。
4、项目特点
- 简单易用:只需通过命令行运行
main.py
并设置参数,即可完成和弦识别。 - 功能强大:支持两种先进的识别算法,适用于多种音乐场景。
- 可视化:提供选项展示识别结果,便于理解和验证。
要开始使用,只需运行下面的命令:
python3 main.py -i 'Grand Piano - Fazioli - major E middle.wav' -m hmm -p True
查看完整帮助信息,请运行python3 main.py -h
。
总的来说,Chord-Recognition 是一款极具实用价值的开源项目,无论是专业人士还是业余爱好者,都能从中受益。赶快加入社区,一起探索音乐和声的新世界吧!
去发现同类优质开源项目:https://gitcode.com/