XuanCe 项目安装与使用教程

XuanCe 项目安装与使用教程

xuance XuanCe: A Comprehensive and Unified Deep Reinforcement Learning Library xuance 项目地址: https://gitcode.com/gh_mirrors/xu/xuance

1. 项目目录结构及介绍

XuanCe 项目的目录结构如下:

xuance/
├── docs/
│   └── ...
├── examples/
│   └── ...
├── tests/
│   └── ...
├── xuance/
│   └── ...
├── .gitignore
├── LICENSE.txt
├── README.md
├── benchmark.py
├── benchmark_marl.py
├── demo.py
├── demo_marl.py
├── readthedocs.yaml
└── setup.py

目录结构介绍

  • docs/: 存放项目的文档文件,包括使用说明、API文档等。
  • examples/: 存放项目的示例代码,帮助用户快速上手。
  • tests/: 存放项目的测试代码,确保项目的稳定性和正确性。
  • xuance/: 项目的主要代码库,包含各种深度强化学习算法的实现。
  • .gitignore: Git 忽略文件,指定哪些文件或目录不需要被版本控制。
  • LICENSE.txt: 项目的开源许可证文件,通常为 MIT 许可证。
  • README.md: 项目的介绍文件,包含项目的基本信息、安装方法、使用说明等。
  • benchmark.py: 用于性能测试的脚本。
  • benchmark_marl.py: 用于多智能体强化学习性能测试的脚本。
  • demo.py: 用于演示单智能体强化学习算法的脚本。
  • demo_marl.py: 用于演示多智能体强化学习算法的脚本。
  • readthedocs.yaml: 用于配置 ReadTheDocs 文档服务的文件。
  • setup.py: 用于安装项目的脚本,包含项目的依赖信息。

2. 项目的启动文件介绍

XuanCe 项目的启动文件主要包括 demo.pydemo_marl.py。这两个文件分别用于启动单智能体和多智能体强化学习算法的演示。

demo.py

该文件用于启动单智能体强化学习算法的演示。用户可以通过修改文件中的参数来选择不同的算法和环境。

import xuance

runner = xuance.get_runner(method='dqn', env='classic_control', env_id='CartPole-v1', is_test=False)
runner.run()

demo_marl.py

该文件用于启动多智能体强化学习算法的演示。用户可以通过修改文件中的参数来选择不同的算法和环境。

import xuance

runner = xuance.get_runner(method='mappo', env='mpe', env_id='simple_spread', is_test=False)
runner.run()

3. 项目的配置文件介绍

XuanCe 项目的配置文件主要包括 setup.pyreadthedocs.yaml

setup.py

该文件用于配置项目的安装信息,包括项目的名称、版本、依赖库等。用户可以通过运行 pip install . 来安装项目及其依赖。

from setuptools import setup, find_packages

setup(
    name='xuance',
    version='0.1.0',
    packages=find_packages(),
    install_requires=[
        'numpy',
        'torch',
        'gym',
        # 其他依赖库
    ],
    extras_require={
        'torch': ['torch'],
        'tensorflow': ['tensorflow'],
        'mindspore': ['mindspore'],
        'all': ['torch', 'tensorflow', 'mindspore'],
    },
)

readthedocs.yaml

该文件用于配置 ReadTheDocs 文档服务的构建环境。用户可以通过该文件指定文档的构建工具、依赖库等。

version: 2

sphinx:
  configuration: docs/conf.py

python:
  version: 3.7
  install:
    - requirements: docs/requirements.txt

通过以上配置,用户可以方便地生成和查看项目的文档。

xuance XuanCe: A Comprehensive and Unified Deep Reinforcement Learning Library xuance 项目地址: https://gitcode.com/gh_mirrors/xu/xuance

数据集介绍:无人机视角水域目标检测数据集 一、基础信息 数据集名称:无人机视角水域目标检测数据集 图片数量: - 训练集:2,752张图片 - 验证集:605张图片 分类类别: - Boat(船只):水域交通作业场景中的常见载具 - Buoy(浮标):水域导航安全标志物 - Jetski(喷气滑艇):高速水上运动载具 - Kayak(皮划艇):小型人力划桨船只 - Paddle_board(桨板):休闲运动类浮板 - Person(人员):水域活动参者的目标检测 标注格式: YOLO格式标注,含目标边界框类别标签,适配主流目标检测框架 数据特性: 无人机航拍视角数据,覆盖不同高度光照条件的水域场景 二、适用场景 水域智能监测系统开发: 支持构建船只流量统计、异常行为检测等水域管理AI系统 水上救援辅助系统: 用于训练快速定位落水人员小型船只的检测模型 水上运动安全监控: 适配冲浪区、赛艇场等场景的运动安全预警系统开发 环境生态研究: 支持浮标分布监测、水域人类活动影响分析等研究场景 三、数据集优势 视角独特性: 纯无人机高空视角数据,有效模拟真实航拍检测场景 目标多样性: 覆盖6类水域高频目标,包含动态载具静态标志物组合 标注精准性: 严格遵循YOLO标注规范,边界框目标实际尺寸高度吻合 场景适配性: 包含近岸开阔水域场景,支持模型泛化能力训练 任务扩展性: 适用于目标检测、运动物体追踪等多任务模型开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

幸竹任

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值