推荐开源项目:Moonlight - 游戏流媒体客户端

推荐开源项目:Moonlight - 游戏流媒体客户端

项目地址:https://gitcode.com/gh_mirrors/mo/moonlight-pc

1、项目介绍

Moonlight 是一款开源的GameStream实现,它是NVIDIA Shield上类似服务的Linux、Mac OS X和Windows版本。这个项目允许您将强大的桌面电脑上的Steam游戏流式传输到运行相同操作系统的其他PC或笔记本电脑上。除了原生的Linux、Mac OS X和Windows应用程序外,还有适用于Android和iOS的版本。

2、项目技术分析

Moonlight利用了NVIDIA的GTX 600/700系列GPU的GameStream功能,支持通过高性能无线路由器(建议采用802.11n双频)或有线网络在设备间进行流畅的游戏流传输。它提供了键盘鼠标支持以及对Xbox 360、PS3、PS4等控制器的全面支持。此外,使用mDNS可以轻松扫描并连接到网络中的兼容GeForce Experience机器。

3、项目及技术应用场景

对于那些希望在家中任何地方畅玩游戏,但又不希望将游戏主机搬来搬去的玩家来说,Moonlight是一个理想的选择。例如,你可以躺在床上通过平板或笔记本电脑玩电脑游戏,或者在任何拥有网络连接的地方享受桌面级别的游戏体验。无论是在客厅的智能电视上,还是在咖啡馆的个人电脑上,都可以无缝接入你的游戏库。

4、项目特点

  • 跨平台:支持Linux、Mac OS X和Windows操作系统。
  • 多设备适配:不仅限于NVIDIA Shield,也兼容各种控制器。
  • 自动发现:通过mDNS技术,能便捷地找到网络内的GFE兼容设备。
  • 自定义设置:可以选择分辨率和帧率,如720p和30fps或1080p和60fps。
  • 社区驱动:活跃的开发团队和社区,不断改进和更新项目。

Moonlight 是一个强大且灵活的开源解决方案,为喜欢远程游戏的玩家提供了一种新的方式来享受他们的游戏收藏。如果你拥有一台配备了NVIDIA显卡的电脑,并想在任何角落都能畅玩游戏,那么Moonlight值得你尝试。

要开始使用,只需在Windows电脑上安装GeForce Experience,然后从GitHub下载相应平台的jar文件即可。简单几步,即可开启你的游戏流媒体之旅!

为了保持项目的活力,开发者们欢迎所有有兴趣的人参与贡献,无论是通过fork、编码,还是提交Pull Request,都可以成为Moonlight大家庭的一部分。

立即加入,享受月光下的游戏盛宴吧!

moonlight-pc Java GameStream client for PC (Discontinued in favor of Moonlight Qt) 项目地址: https://gitcode.com/gh_mirrors/mo/moonlight-pc

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张姿桃Erwin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值