推荐开源项目:dbt-expectations

推荐开源项目:dbt-expectations

dbt-expectationsPort(ish) of Great Expectations to dbt test macros项目地址:https://gitcode.com/gh_mirrors/db/dbt-expectations

在数据处理和分析的世界里,dbt 已经成为了一种强大的工具,它允许我们以声明式的方式定义数据转换。而 dbt-expectations 是针对 dbt 的一个强大扩展,引入了类似 Great Expectations 的测试框架,使你能够在数据仓库中直接执行数据质量检查。

项目介绍

dbt-expectations 将 Great Expectations 的核心理念与 dbt 结合,让数据工程师能够轻松地在 dbt 模型中集成数据验证规则,无需额外的仓库交互。这个开源项目由 Calogica 开发并维护,旨在简化数据质量管理和监控过程,支持多种数据库平台,包括 Postgres、Snowflake、BigQuery 和 Spark(实验性)等。

项目技术分析

dbt-expectations 提供了一系列预定义的测试,涵盖了从基础的表结构完整性检查到复杂的分布统计检验。这些测试包括:

  • 表形状验证:如预期列存在、行数符合预期范围等。
  • 值的缺失、唯一性和类型检查:确保列值非空、唯一或符合特定类型。
  • 集合和范围验证:例如,检查列值是否在特定集合内或介于指定范围内。
  • 字符串匹配:使用 LIKE 或正则表达式来验证列值模式。
  • 聚合函数:如期望某个列的唯一计数值、均值、中位数等满足特定条件。

此外,dbt-expectations 还依赖于 dbt-date 包,以提供时间相关的功能,但用户不需要单独安装此包。

项目及技术应用场景

对于任何利用 dbt 进行数据仓库建模和管理的团队来说,dbt-expectations 都是一个极好的工具。它可以用于以下场景:

  • 数据质量保证:在数据加载或转换后进行实时验证,确保数据正确无误。
  • 数据审计:定期运行测试以检测潜在的数据漂移或异常。
  • 自动化工作流:结合 CI/CD 系统,自动执行数据质量检查,以便快速发现和修复问题。

项目特点

  • 易用性:通过简单的 YAML 配置即可定义测试,与 dbt 的现有工作流程无缝集成。
  • 广泛的支持:兼容多种流行的数据仓库,包括云服务和开源选项。
  • 丰富的测试库:涵盖多种数据验证规则,满足各种数据质量需求。
  • 灵活的配置:可以对测试应用特定的条件,比如日期间隔和过滤器。

为了开始使用 dbt-expectations,只需将它添加到你的 packages.yml 文件中,并根据官方文档配置相关变量和测试。了解更多关于这个项目的详细信息,请访问其GitHub页面官方文档

总的来说,dbt-expectations 是提升数据治理效率、确保数据质量的一个不可或缺的工具,值得所有 dbt 用户尝试和采用。

dbt-expectationsPort(ish) of Great Expectations to dbt test macros项目地址:https://gitcode.com/gh_mirrors/db/dbt-expectations

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张姿桃Erwin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值