- 博客(630)
- 收藏
- 关注

原创 《算法岗面试宝典》正式发布
薪资真香、技术难度真大、要求真的很全面,但不是没有方法可循、可借鉴的。业务知识 + 专业知识 + 编程基础能力+刷题(LeetCode/剑指Offer) + 项目 + 实习 + 竞赛 +顶会/顶刊+学校针对岗位要求,我在知识星球和《算法面试宝典》中详细给大家介绍。让加入的朋友了解最前沿的知识点,有问题给予专业指导,少栽跟头。这份《算法面试宝典》,文档字数 30w+,我们也在一直更新,涵盖算法岗的方方面面,相信你读完并思考实践后,你一定能有所收获。
2024-09-22 08:25:45
716

原创 《机器学习算法实战宝典》正式发布!
大家好,我是城哥,最近写了两本资料,一本是:《机器学习算法面试宝典》正式发布!,内容是面试技巧、面试真题、常考题等。今天分享的《机器学习算法实战宝典》(以下简称《算法实战宝典》)内容侧重公司级的实操、实战。篇幅有限,《算法实战宝典》部分目录如下:《算法实战宝典》的优点:1、《算法实战宝典》会定期更新迭代,一次订阅、后续无需额外费用。2、《算法实战宝典》内容经过城哥精挑细选,项目包括:公司级项目和kaggle 大赛项目,内容质量有保障及有代码、数据、可复现。3、《算法实战宝典》对内容进行系统化梳理,自成体系,
2024-04-05 08:53:47
747
3

原创 《机器学习算法面试宝典》正式发布!
大家好,历时半年的梳理和修改,《机器学习算法面试宝典》(以下简称《算法面试宝典》)终于可以跟大家见面了。近年来,很多理科专业学生也纷纷转入算法赛道,特别是最近 ChatGPT 的爆火,推动了AI 技术圈对大模型的研究热情,AI 就业市场人数越来越多,算法岗已成进入了竞争难度第一梯度(超级卷)的岗位。
2024-04-05 08:29:20
798

原创 这一次,我准备了 20节 PyTorch 中文课程
本书是我利用工作之余大概3个月写成的,大部分读者应该在20天可以完全学会。预计每天花费的学习时间在30分钟到2个小时之间。当然,本书也非常适合作为 Pytorch 的工具手册在工程落地时作为范例库参考。日期学习内容内容难度预计学习时间更新状态B站讲解一、Pytorch的建模流程⭐️0hour✅day11-1,结构化数据建模流程范例⭐️⭐️⭐️1hour✅day21-2,图片数据建模流程范例⭐️⭐️⭐️⭐️2hour✅day31-3,文本数据建模流程范例⭐️⭐️⭐️⭐️⭐️。
2023-12-26 22:35:00
3796
1

原创 整理了上千个 Python 工具库,涵盖24个大方向
Python 生态,向来以各种类库齐全而闻名,这也是这门语言如此受欢迎的重要原因。今天就给大家分享一下这几天的战果,宵衣旰食,不眠不休的整理了近千个 Python 库,
2022-12-31 22:55:30
16259
13

原创 用通俗易懂的方式讲解:主成分分析(PCA)算法及案例(Python 代码)
在上面的PCA算法中,我们假设存在一个线性的超平面,可以让我们对数据进行投影。但是有些时候,数据不是线性的,不能直接进行PCA降维。这里就需要用到和支持向量机一样的核函数的思想,先把数据集从 n 维映射到线性可分的高维 N>n,然后再从N维降维到一个低维度 n’,这里的维度之间满足 n’ < n< N。使用了核函数的主成分分析一般称之为核主成分分析(Kernelized PCA,以下简称 KPCA。假设高维空间的数据是由 n 维空间的数据通过映射 Φ 产生)。
2022-10-06 12:36:41
51449
17

原创 用通俗易懂的方式讲解:lightGBM 算法及案例(Python 代码)
AdaBoost是一种提升树的方法,和三个臭皮匠,赛过诸葛亮的道理一样。(1) 如何改变训练数据的权重或概率分布提高前一轮被弱分类器错误分类的样本的权重,降低前一轮被分对的权重(2) 如何将弱分类器组合成一个强分类器,亦即,每个分类器,前面的权重如何设置采取”多数表决”的方法.加大分类错误率小的弱分类器的权重,使其作用较大,而减小分类错误率大的弱分类器的权重,使其在表决中起较小的作用。lightGBM是2017年1月,微软在GItHub上开源的一个新的梯度提升框架。
2022-10-05 12:58:52
8427
1

原创 用通俗易懂的方式讲解: xgboost 算法及案例(Python 代码)
把树拆分成结构部分q和叶子权重部分w。树的复杂度函数和样例:定义树的结构和复杂度的原因很简单,这样就可以衡量模型的复杂度了啊,从而可以有效控制过拟合。目标函数通过二阶泰勒展开式做近似定义了树的复杂度,并应用到目标函数中分裂结点处通过结构打分和分割损失动态生长分裂结点的候选集合通过一种分布式Quantile Sketch得到可以处理稀疏、缺失数据可以通过特征的列采样防止过拟合。
2022-10-05 12:37:04
5580
1

原创 用通俗易懂的方式讲解: GBDT算法及案例(Python 代码)
GBDT是Gradient Boosting Decision Tree(梯度提升树)的缩写。GBDT算法也是一种非常实用的Boosting算法,它与AdaBoost算法的区别在于:AdaBoost算法根据分类效果调整权重并不断迭代,最终生成强学习器;GBDT算法则将损失函数的负梯度作为残差的近似值,不断使用残差迭代和拟合回归树,最终生成强学习器。简单来说,AdaBoost算法是调整权重,而GBDT算法则是拟合残差。通过一个简单案例理解GBDT算法的核心思想。下表中有4个样本客户的数据,特征变量X1为年龄,
2022-10-05 12:14:06
6339
3

原创 用通俗易懂的方式讲解: 随机森林及案例(Python 代码)
集成学习模型使用一系列弱学习器(也称为基础模型或基模型)进行学习,并将各个弱学习器的结果进行整合,从而获得比单个学习器更好的学习效果。集成学习模型的常见算法有Bagging算法和Boosting算法两种。Bagging算法的典型机器学习模型为随机森林模型,而Boosting算法的典型机器学习模型则为AdaBoost、GBDT、XGBoost和LightGBM模型。Bagging算法的原理类似投票,每个弱学习器都有一票,最终根据所有弱学习器的投票,按照“少数服从多数”的原则产生最终的预测结果,如下图所示。
2022-10-05 11:31:30
12483

原创 用通俗易懂的方式讲解:决策树模型及案例(Python 代码)
基本原理是通过对一系列问题进行if/else的推导,最终实现相关决策。决策树模型的一个实例:决策树的概念并不复杂,主要是通过连续的逻辑判断得出最后的结论,其关键在于如何建立这样一棵“树”。
2022-10-05 11:08:08
25088
3

原创 用通俗易懂的方式讲解:逻辑回归模型及案例(Python 代码)
逻辑回归也被称为广义线性回归模型,它与线性回归模型的形式基本上相同,最大的区别就在于它们的因变量不同,如果是连续的,就是多重线性回归;如果是二项分布,就是Logistic回归。Logistic回归虽然名字里带“回归”,但它实际上是一种分类方法,主要用于二分类问题(即输出只有两种,分别代表两个类别),也可以处理多分类问题。
2022-10-05 10:25:33
6928
1

原创 基于 Echarts + Python 动态实时大屏真棒【附源码】
大家好,今天给大家分享,基于 Echarts + Python 动态实时大屏。
2022-09-29 22:28:51
1170

原创 有人把吴恩达老师的机器学习和深度学习做成了中文版
近年来 AI 越来越火,吴恩达是被公认的人工智能(AI)和机器学习领域国际最权威的学者,他一直致力于普及、宣传、推广 AI 教育,包括最前沿、最火爆的 AI 基础课程、深度学习课程等等。惠及全球超过 500w 的人工智能爱好者。吴恩达的机器学习基本涵盖了机器学习的主要知识点:线性回归、逻辑回归、支持向量机、神经网络、K-Means、异常检测等。课程中没有复杂的公式推导和理论分析,让机器学习初学者能够快速对整个机器学习知识点有比较整体的认识,便于快速入门。吴恩达开设了5门课组成的深度学习专项课程,掀起了一
2022-02-17 09:34:57
6148
1

原创 pygal:一款好用到爆的 Python 可视化利器,炫酷动态图轻松绘制
一般提及数据可视化,会Python的读者朋友可能第一时间想到的就是matplotlib模块或者是seaborn模块,而谈及绘制动态图表,大家想到的比较多的是Plotly或者是Pyecharts。注:文末提供Python数据可视化交流群,群内高手如云今天小编来为大家介绍另外一个绘制动态图表的模块 pygal,使用起来非常的便捷,而且绘制出来的图表也是十分的精湛好看,相比较seaborn等常用的模块相比,该模块的优点有:高度可定制,而且用法简单图表可交互性强图像可导出SVG格式(矢量图形)
2021-12-11 14:05:03
15996
6

原创 DeepMind加持的GNN框架正式开源,TensorFlow进入图神经网络时代
谷歌在垃圾邮件检测、流量估计以及YouTube内容标签等环境中使用了一种强大的工具GNN(图神经网络)。11月18日,谷歌联合DeepMind对外开源TensorFlow GNN工具,助力流量预测、谣言和假新闻检测、疾病传播建模、物理模拟等领域的基础研究。11月18日,谷歌联合DeepMind发布了TensorFlow GNN(图神经网络)。目前,谷歌已经在诸如垃圾邮件检测、流量估计以及YouTube内容标签等环境中用上了这个库的早期版本。为什么要用GNN?图(Graph)是用于表示对象之间.
2021-11-23 14:01:52
2332

原创 超过53亿!《长津湖》为什么这么火爆?我用 Python 来分析猫眼影评
对于这个十一黄金周的电影市场,绝对是《长津湖》的天下,目前票房就已经突破53亿,大有奋起直追《战狼2》的尽头。而且口碑也是相当的高,猫眼评分高达9.5,绝对的票房口碑双丰收啊下面我们就通过爬取猫眼的电影评论,进行相关的可视化分析,看看为什么这部电影是如此的受欢迎,最后还进行了简单的票房预测,你一定不能错过哦,欢迎收藏学习,点赞支持,喜欢技术交流的可以文末技术交流群。数据获取猫眼评论爬取,还是那么老一套,直接构造 API 接口信息即可url = "https://m.maoyan.com/mmdb/
2021-10-25 22:15:35
1803
4

原创 10000+字,一篇不可多得的 Python 数据可视化 “保姆级“ 攻略!
今天让我们看一下使用Python进行数据可视化的主要库,以及可以使用它们完成的所有类型的图表。我们还将看到建议在每种情况下,使用哪个库以及每个库的独特功能。我们将从最基本的可视化开始,直接查看数据,然后继续绘制图表,最后制作交互式图表。我们将使用两个数据集来适应本文中显示的可视化效果,数据集可通过下方链接进行下载。数据集:github.com/albertsl/datasets这些数据集都是与人工智能相关的三个术语(数据科学,机器学习和深度学习)在互联网上搜索流行度的数据,从搜索引擎中提取而来。该数据集包含
2021-10-19 09:17:22
426
原创 小白学大模型:多模态 Qwen2.5-VL
Qwen-VL 是阿里云研发的大规模视觉语言模型(Large Vision Language Model, LVLM)。Qwen-VL 可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。Qwen-VL 系列模型性能强大,具备多语言对话、多图交错对话等能力,并支持中文开放域定位和细粒度图像识别与理解。
2025-05-10 16:48:29
1032
原创 小白学大模型:从零实现 LLM语言模型
在当今人工智能领域,大型语言模型(LLM)的开发已经成为一个热门话题。这些模型通过学习大量的文本数据,能够生成自然语言文本,完成各种复杂的任务,如写作、翻译、问答等。
2025-05-10 16:43:57
948
原创 Label Studio:一个优秀的开源大模型数据标注平台
在LLM(大型语言模型)时代,数据标注质量直接决定了模型的智能上限。作为开源数据标注领域的标杆工具,Label Studio 凭借其多模态支持能力与高度可定制化的特性,正成为大模型训练中数据工程的基石。从文本三元组关系抽提到视频对象追踪,从低资源语言的语音标注到医学影像的像素级分割,Label Studio 通过统一的交互界面打破了传统标注工具的场景局限。
2025-04-12 16:58:24
1060
原创 图解混合专家(MoE)模型
在探索最新的大语言模型(LLM)时,“MoE”这一术语频繁出现在各种标题之中。DeepSeek-V3便是一个实力强劲的混合专家(MoE)模型,其总参数量高达6710亿,且在处理每个标记(token)时,能够智能地激活约370亿的参数,实现高效计算。同样引人注目的还有Qwen2.5-Max,这一大规模MoE模型通过精心设计的监督微调(SFT)流程以及基于人类反馈的强化学习(RLHF)方法进行了后训练,大大提升了其性能与实用性。这个“ MoE ”代表什么?为什么这么多大语言模型(LLM)都在使用它?
2025-04-12 16:50:06
1073
原创 基于 Deepseek LLM 本地知识库搭建开源方案(AnythingLLM、Cherry、Ragflow、Dify)
写在前面博文内容涉及基于 Deepseek LLM 的本地知识库搭建使用 ollama 部署 Deepseek-R1 LLM知识库能力通过 Ragflow、Dify 、AnythingLLM、Cherry 提供。
2025-03-29 23:12:51
1111
原创 《算法岗面试宝典》重磅发布!
薪资真香、技术难度真大、要求真的很全面,但不是没有方法可循、可借鉴的。业务知识 + 专业知识 + 编程基础能力+刷题(LeetCode/剑指Offer) + 项目 + 实习 + 竞赛 +顶会/顶刊+学校针对岗位要求,我在知识星球和《算法面试宝典》中详细给大家介绍。让加入的朋友了解最前沿的知识点,有问题给予专业指导,少栽跟头。这份《算法面试宝典》,文档字数 30w+,我们也在一直更新,涵盖算法岗的方方面面,相信你读完并思考实践后,你一定能有所收获。
2025-03-29 22:43:44
467
2
原创 10个PyTorch CUDA编程小技巧,实现高效GPU计算
掌握 PyTorch 中的 CUDA 技术,是开启高性能深度学习的重要一步。当你理解并应用这些技术时,能够有效提升模型的训练和推理速度。高效利用GPU,不仅依赖强大的硬件,更在于合理的编码实践!在后续使用 CUDA 和 PyTorch 的过程中,要持续探索和尝试。GPU 计算领域持续发展,不断更新最佳实践,紧跟这些最新进展,会为你的深度学习项目带来更好的性能表现。
2025-03-23 09:52:44
825
原创 100个Pandas小技巧,让你精通Python数据分析
使用将函数应用于每个分组。使用将自定义函数应用于每个元素。使用df.apply()按元素应用函数。
2025-03-23 09:39:06
904
原创 秒杀DeepSeek,WPS的AI函数太强了!函数真的要被抛弃了
之前给大家分享了如何在WPS中开启DeepSeekR1,最近又发现WPS更新了AI函数,我的账号不是会员也能使用它们相较于DeepSeek繁琐的使用方法,我觉得AI函数更加的便捷,这才是提高工作效率的神器,秒杀DeepSeek,操作也非常的简单。
2025-03-03 22:19:31
457
原创 DeepSeek 配合 Mermaid,自动生成甘特图
Mermaid的特点是简洁的语法和跨平台兼容性,让用户可以通过简单的文本描述来创建多种类型的图表,我们常见的,甘特图,流程图,正态分布图,甚至桑基图都是可以的。今天跟大家分享下我们如何使用DeepSeek与Mermaid来实现快速的生成图表,操作也非常的简单,只需要准备好自己的数据源即可,我们就以下面的数据为例来演示下如何生成甘特图。首先可以在下点上传附件,附件上传后,给出指令生成甘特图,并且以Mermaid的格式输出,这个格式非常的重要,生成完毕后,在右上角直接粘贴即可。三、Mermaid生成图表。
2025-03-03 22:10:44
1201
原创 DeepSeek杀死了Excel!感觉我要失业了!
2025开年相信大家都被DeepSeek刷屏了,DeepSeek以极地训练成本这么低,就获取了跟ChatGPT相近的性能,给美国科技圈一记暴击。有不少粉丝都问道DeepSeek应该怎么使用?只要你会将文字输入到AI对话框里,就能使用AI工具提高工作效率,下面就有把手教你如何使用DeepSeek解决Excel问题。
2025-02-12 21:16:21
365
原创 清华大学DeepSeek使用手册,长达104页!(附PPT下载)
从避免AI幻觉的小窍门,到设计出色提示语的秘籍,每一页都凝聚着干货知识,让用户能够直接上手操作,快速掌握DeepSeek的精髓。这份文档不仅为用户提供了关于DeepSeek的全面知识,还体现了中国科技在人工智能领域的快速发展。《DeepSeek:从入门到精通》以通俗易懂的方式,全面介绍了DeepSeek的使用方法,为用户提供了极具价值的指导。这份文档内容丰富,篇幅长达104页,涵盖了众多实用技巧。
2025-02-12 21:10:59
2452
原创 vscode中调用deepseek实现AI辅助编程太爽了
最近国产大模型新版本凭借其优秀的模型推理能力,讨论度非常之高🔥,且其官网提供的相关大模型API接口服务价格一直走的“价格屠夫”路线,性价比很高,本期文章中,就将为大家举例,如何在vscode中,基于开源AI编程辅助插件Continue,配置基于Deepseek的API接口,实现常用的AI编程辅助等功能。
2025-02-06 17:16:56
970
原创 《大模型面试宝典》(2025版) 正式发布!
大部分人可能想不到,2025年春节假期,大模型圈子竟然会这么热闹。DeepSeek 正式开源了 DeepSeek-R1,在数学、代码和自然语言推理等任务上比肩 OpenAI o1 正式版。这位来自「神秘东方力量」DeepSeek 算是彻底破圈,火遍大江南北,火到人尽皆知。经历了过去两年的狂飙,国内大模型已经在多个垂直赛道中强势崛起,跨过了护城河,已发布的模型超过200个,相关应用产品不计其数。
2025-02-06 17:08:03
627
2
原创 小红书算法岗面试,竞争太激烈了
知道晋升被卡的结果,我开始重新登录 LeetCode,历时一个多月,面试了多家企业。经过多轮面试和准备,最后选择了小红书。
2024-10-06 16:55:52
1226
原创 转码第 188 天-高德算法实习面经分享
最近已有不少大厂都在秋招宣讲了,也有一些在 Offer 发放阶段。节前,我们邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。针对新人如何快速入门算法岗、如何准备面试攻略、面试常考点、大模型项目落地经验分享等热门话题进行了深入的讨论。先两道题:两数之和(递增子序列),最长相同前缀挑一段和算法相关的项目经验进行介绍Xgboost和gbdt的区别有调参吗?目标是什么?Xgboost的损失函数是什么?L1loss和L2loss的区别?Xgboost,刚刚说了y,那么x呢?
2024-10-01 21:11:39
448
原创 GBDT、XGBoost、LightGBM,树模型全面对比 !!
最近已有不少大厂都在秋招宣讲了,也有一些在 Offer 发放阶段。节前,我们邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。针对新人如何快速入门算法岗、如何准备面试攻略、面试常考点、大模型项目落地经验分享等热门话题进行了深入的讨论。今儿和大家聊聊GBDT、XGBoost和LightGBM的区别和联系~
2024-10-01 21:00:56
3119
原创 双非本 985 硕士,秋招上岸字节算法岗!
最近已有不少大厂都在秋招宣讲了,也有一些在 Offer 发放阶段。节前,我们邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。针对新人如何快速入门算法岗、如何准备面试攻略、面试常考点、大模型项目落地经验分享等热门话题进行了深入的讨论。背景:电子科技大学 985硕士 字节算法岗Offer我最近已有几次大厂面试经历,目前还在刷面经和复盘,想想面试的时候,什么地方回答的不好(主要是项目经历的部分)总结整个面试下来,基础题偏多,算法原理的内容也不少,工程方面偏向于工程落地实现。
2024-09-22 21:46:25
480
原创 最强全面总结,十大集成学习模型!!!
Bagging 通过在原始数据集的随机子集上训练多个基本模型,并对它们的预测结果进行平均或投票来减少方差。
2024-04-25 23:12:42
3427
原创 梳理 Pytorch 19个方面,70个核心操作全总结!
掌握以上19种操作方法可以让你更好地使用 PyTorch 进行深度学习任务。这些操作方法涵盖了张量的创建、变换、数学运算、梯度计算、模型构建、数据处理等方面,是使用 PyTorch 进行深度学习的基础操作。
2024-04-25 23:05:58
1284
原创 被狠狠拷打!想冲 PDD 机器学习算法岗,一面直接挂了。。。
节前,我们社群组织了一场技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学,针对新手如何机器学习算法、企业级落地场景、大模型的发展趋势与落地实践、新人该如何备考、面试常考点等热门话题进行了深入的讨论。今天我整理星球群一个同学的面试PDD的面试题,分享给大家,希望对后续找工作的有所帮助。被pdd算法拷打了,面试官非常儒雅随和,虽然我在那胡言乱语 还是能给反馈= 可惜我太菜了。
2024-04-09 21:46:30
802
原创 面了美团和 OPPO 的机器学习算法岗,居然都问了大模型相关问题。。。
节前,我们社群组织了一场技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学,针对新手如何机器学习算法、企业级落地场景、大模型的发展趋势与落地实践、新人该如何备考、面试常考点等热门话题进行了深入的讨论。今天我整理了一个同学的机器学习算法岗面试题,分享给大家,希望对后续找工作的有所帮助。
2024-04-05 09:25:20
1021
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人