DeepLabV3Plus-PyTorch 项目使用教程
1. 项目目录结构及介绍
deeplabv3plus-pytorch/
├── data/
│ └── VOCdevkit/
│ └── VOC2012/
├── experiment/
│ └── project_name/
├── lib/
│ ├── datasets/
│ ├── net/
│ └── utils/
├── log/
├── model/
├── README.md
├── LICENSE
└── train.py
└── test.py
目录结构说明
- data/: 存放数据集的目录,通常包括VOC2012数据集和其他相关数据集。
- experiment/: 存放实验配置文件和训练日志的目录。
- lib/: 包含项目的主要代码库,包括数据集处理、网络模型定义和工具函数等。
- datasets/: 数据集处理相关代码。
- net/: 网络模型定义相关代码。
- utils/: 工具函数相关代码。
- log/: 存放训练日志的目录。
- model/: 存放训练好的模型文件的目录。
- README.md: 项目介绍和使用说明。
- LICENSE: 项目许可证文件。
- train.py: 训练脚本。
- test.py: 测试脚本。
2. 项目的启动文件介绍
train.py
train.py
是项目的训练脚本,用于启动模型的训练过程。以下是启动训练的步骤:
- 配置文件设置: 在
experiment/project_name/config.py
中设置训练参数。 - 启动训练: 在终端中运行以下命令:
cd experiment/project_name python train.py
test.py
test.py
是项目的测试脚本,用于评估训练好的模型的性能。以下是启动测试的步骤:
- 配置文件设置: 在
experiment/project_name/config.py
中设置测试参数。 - 启动测试: 在终端中运行以下命令:
cd experiment/project_name python test.py
3. 项目的配置文件介绍
config.py
config.py
是项目的配置文件,位于 experiment/project_name/
目录下。该文件包含了训练和测试过程中所需的各种参数设置。
主要配置项
- 数据集路径: 设置数据集的存放路径。
- 模型参数: 设置模型的超参数,如学习率、批量大小等。
- 训练参数: 设置训练过程中的参数,如训练轮数、是否使用多GPU等。
- 测试参数: 设置测试过程中的参数,如是否使用多尺度测试、是否翻转测试等。
示例配置
# 数据集路径
DATA_DIRECTORY = '/path/to/your/data'
# 模型参数
LEARNING_RATE = 0.007
BATCH_SIZE = 8
# 训练参数
NUM_EPOCHS = 50
MULTI_GPU = True
# 测试参数
MULTI_SCALE_TEST = True
FLIP_TEST = True
通过修改 config.py
文件中的参数,可以灵活地调整训练和测试过程。