DeepLabV3Plus-PyTorch 项目使用教程

Majya是一个由Xilinx开发的开源Python自动化测试框架,以模块化设计、跨平台兼容和API驱动为核心,适用于硬件验证、固件测试和系统集成。其易用性和灵活性使其成为高效测试解决方案。
摘要由CSDN通过智能技术生成

DeepLabV3Plus-PyTorch 项目使用教程

deeplabv3plus-pytorch Here is a pytorch implementation of deeplabv3+ supporting ResNet(79.155%) and Xception(79.945%). Multi-scale & flip test and COCO dataset interface has been finished. 项目地址: https://gitcode.com/gh_mirrors/dee/deeplabv3plus-pytorch

1. 项目目录结构及介绍

deeplabv3plus-pytorch/
├── data/
│   └── VOCdevkit/
│       └── VOC2012/
├── experiment/
│   └── project_name/
├── lib/
│   ├── datasets/
│   ├── net/
│   └── utils/
├── log/
├── model/
├── README.md
├── LICENSE
└── train.py
└── test.py

目录结构说明

  • data/: 存放数据集的目录,通常包括VOC2012数据集和其他相关数据集。
  • experiment/: 存放实验配置文件和训练日志的目录。
  • lib/: 包含项目的主要代码库,包括数据集处理、网络模型定义和工具函数等。
    • datasets/: 数据集处理相关代码。
    • net/: 网络模型定义相关代码。
    • utils/: 工具函数相关代码。
  • log/: 存放训练日志的目录。
  • model/: 存放训练好的模型文件的目录。
  • README.md: 项目介绍和使用说明。
  • LICENSE: 项目许可证文件。
  • train.py: 训练脚本。
  • test.py: 测试脚本。

2. 项目的启动文件介绍

train.py

train.py 是项目的训练脚本,用于启动模型的训练过程。以下是启动训练的步骤:

  1. 配置文件设置: 在 experiment/project_name/config.py 中设置训练参数。
  2. 启动训练: 在终端中运行以下命令:
    cd experiment/project_name
    python train.py
    

test.py

test.py 是项目的测试脚本,用于评估训练好的模型的性能。以下是启动测试的步骤:

  1. 配置文件设置: 在 experiment/project_name/config.py 中设置测试参数。
  2. 启动测试: 在终端中运行以下命令:
    cd experiment/project_name
    python test.py
    

3. 项目的配置文件介绍

config.py

config.py 是项目的配置文件,位于 experiment/project_name/ 目录下。该文件包含了训练和测试过程中所需的各种参数设置。

主要配置项
  • 数据集路径: 设置数据集的存放路径。
  • 模型参数: 设置模型的超参数,如学习率、批量大小等。
  • 训练参数: 设置训练过程中的参数,如训练轮数、是否使用多GPU等。
  • 测试参数: 设置测试过程中的参数,如是否使用多尺度测试、是否翻转测试等。
示例配置
# 数据集路径
DATA_DIRECTORY = '/path/to/your/data'

# 模型参数
LEARNING_RATE = 0.007
BATCH_SIZE = 8

# 训练参数
NUM_EPOCHS = 50
MULTI_GPU = True

# 测试参数
MULTI_SCALE_TEST = True
FLIP_TEST = True

通过修改 config.py 文件中的参数,可以灵活地调整训练和测试过程。

deeplabv3plus-pytorch Here is a pytorch implementation of deeplabv3+ supporting ResNet(79.155%) and Xception(79.945%). Multi-scale & flip test and COCO dataset interface has been finished. 项目地址: https://gitcode.com/gh_mirrors/dee/deeplabv3plus-pytorch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

周琰策Scott

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值