Cortex.cpp 开源项目教程
1. 项目介绍
Cortex.cpp 是一个本地 AI 引擎,用于运行和定制大型语言模型(LLMs)。它支持多种模型格式,包括 llama.cpp
、onnx
和 tensorrt-llm
。Cortex.cpp 可以作为独立服务器部署,也可以集成到应用程序中,如 Jan.ai。
2. 项目快速启动
2.1 安装
2.1.1 本地安装器
Cortex.cpp 提供了本地安装器,适用于 Windows、MacOS 和 Linux 系统。以下是安装步骤:
-
Windows:
sudo apt install /cortex-local-installer.exe
-
MacOS:
sudo apt install /cortex-local-installer.pkg
-
Linux:
sudo apt install /cortex-local-installer.deb
2.1.2 网络安装器
网络安装器需要互联网连接来下载必要的依赖项:
-
Windows:
sudo apt install /cortex-network-installer.exe
-
MacOS:
sudo apt install /cortex-network-installer.pkg
-
Linux:
sudo apt install /cortex-network-installer.deb
2.2 使用
安装完成后,可以通过命令行运行 Cortex.cpp:
cortex --help
对于 Beta 预览版,可以使用以下命令:
cortex-beta --help
3. 应用案例和最佳实践
3.1 模型运行
Cortex.cpp 支持多种模型,以下是一些示例:
-
llama.cpp:
cortex run llama3:1
-
TensorRT:
cortex run mistral
-
ONNXRuntime:
cortex run qwen2:7b-gguf
3.2 最佳实践
- 内存要求: 运行 7B 模型至少需要 8GB RAM,14B 模型需要 16GB RAM,32B 模型需要 32GB RAM。
- 模型管理: 所有下载的模型源文件将存储在
~\cortexcpp\models
目录中。
4. 典型生态项目
4.1 Jan.ai
Jan.ai 是一个集成 Cortex.cpp 的应用程序,提供本地 AI 模型的运行和定制功能。
4.2 其他生态项目
- llama.cpp: 一个轻量级的 C++ 库,用于运行和优化 LLMs。
- TensorRT-LLM: NVIDIA 的 TensorRT 库,用于加速 LLMs 的推理。
- ONNXRuntime: 一个跨平台的深度学习推理引擎。
通过这些生态项目,Cortex.cpp 可以实现更高效的模型运行和定制。