Cortex.cpp 开源项目教程

Cortex.cpp 开源项目教程

cortex Drop-in, local AI alternative to the OpenAI stack. Multi-engine (llama.cpp, TensorRT-LLM). Powers 👋 Jan cortex 项目地址: https://gitcode.com/gh_mirrors/cor/cortex

1. 项目介绍

Cortex.cpp 是一个本地 AI 引擎,用于运行和定制大型语言模型(LLMs)。它支持多种模型格式,包括 llama.cpponnxtensorrt-llm。Cortex.cpp 可以作为独立服务器部署,也可以集成到应用程序中,如 Jan.ai。

2. 项目快速启动

2.1 安装

2.1.1 本地安装器

Cortex.cpp 提供了本地安装器,适用于 Windows、MacOS 和 Linux 系统。以下是安装步骤:

  • Windows:

    sudo apt install /cortex-local-installer.exe
    
  • MacOS:

    sudo apt install /cortex-local-installer.pkg
    
  • Linux:

    sudo apt install /cortex-local-installer.deb
    
2.1.2 网络安装器

网络安装器需要互联网连接来下载必要的依赖项:

  • Windows:

    sudo apt install /cortex-network-installer.exe
    
  • MacOS:

    sudo apt install /cortex-network-installer.pkg
    
  • Linux:

    sudo apt install /cortex-network-installer.deb
    

2.2 使用

安装完成后,可以通过命令行运行 Cortex.cpp:

cortex --help

对于 Beta 预览版,可以使用以下命令:

cortex-beta --help

3. 应用案例和最佳实践

3.1 模型运行

Cortex.cpp 支持多种模型,以下是一些示例:

  • llama.cpp:

    cortex run llama3:1
    
  • TensorRT:

    cortex run mistral
    
  • ONNXRuntime:

    cortex run qwen2:7b-gguf
    

3.2 最佳实践

  • 内存要求: 运行 7B 模型至少需要 8GB RAM,14B 模型需要 16GB RAM,32B 模型需要 32GB RAM。
  • 模型管理: 所有下载的模型源文件将存储在 ~\cortexcpp\models 目录中。

4. 典型生态项目

4.1 Jan.ai

Jan.ai 是一个集成 Cortex.cpp 的应用程序,提供本地 AI 模型的运行和定制功能。

4.2 其他生态项目

  • llama.cpp: 一个轻量级的 C++ 库,用于运行和优化 LLMs。
  • TensorRT-LLM: NVIDIA 的 TensorRT 库,用于加速 LLMs 的推理。
  • ONNXRuntime: 一个跨平台的深度学习推理引擎。

通过这些生态项目,Cortex.cpp 可以实现更高效的模型运行和定制。

cortex Drop-in, local AI alternative to the OpenAI stack. Multi-engine (llama.cpp, TensorRT-LLM). Powers 👋 Jan cortex 项目地址: https://gitcode.com/gh_mirrors/cor/cortex

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

周澄诗Flourishing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值