推荐项目:R for Data Science(r4ds)

推荐项目:R for Data Science(r4ds)

去发现同类优质开源项目:https://gitcode.com/

项目简介

是由 Hadley Wickham 和 Garrett Grolemund 合著的一本开源电子书,旨在帮助数据科学家有效地使用 R 语言进行数据处理、探索和可视化。这本书以实践为导向,涵盖了广泛的数据科学主题,并提供了许多实用的工具和技巧。

技术分析

**1. ** Tidyverse 集成 - 本书的核心是 Tidyverse,一个由 Hadley 主导开发的 R 包集合,包括 dplyr, ggplot2, tidyr 等,它们设计了一套一致的语法,使得数据操作更为简洁和高效。

2. 数据操作 - 使用 dplyr 包,你可以轻松地进行选择、过滤、聚合和重排数据。tidyr 则用于整理数据,使其符合“整洁”原则,便于后续分析。

3. 数据可视化 - ggplot2 是基于 Grammar of Graphics 的图形系统,允许你构建复杂图表,并通过简单的方式来调整其样式和细节。

**4. ** Wickham's Laws **- Hadley 提出了一系列规则,如“数据应该是一种表格”,“操作应保持数据整洁”等,这些理念贯穿于全书,有助于形成良好的数据处理习惯。

5. 包管理和开发 - 书中还介绍了如何使用 devtools, roxygen2 等工具来开发和管理自己的 R 包,这对于 R 开发者尤其有用。

应用场景

1. 数据清洗与预处理 - 对于任何涉及数据的工作,r4ds 都提供了解决方案,从导入数据到处理缺失值、异常值,再到日期时间格式转换。

2. 数据分析 - 学习 r4ds 可以帮助你更好地理解统计概念并应用到实际问题中,例如线性模型、逻辑回归、聚类等。

3. 数据可视化 - 不论是简单的柱状图还是复杂的交互式图表,ggplot2 都能胜任,使你的报告更加生动且有说服力。

4. 教育与自学 - 对于初学者,r4ds 是一个很好的入门教材;对于经验丰富的数据分析师,它也提供了新的视角和工具。

特点

1. 易读性强 - 文本清晰,代码示例丰富,易于理解和模仿。

2. 实战导向 - 案例贴近实际,助你在解决问题的过程中学习新知识。

3. 更新频繁 - 作为开源项目,r4ds 随着 R 生态系统的进步而不断更新和完善。

4. 社区支持 - 大量在线资源、讨论和社区解答为读者提供了额外的帮助。

结语

如果你正在寻找一种有效且强大的方法来提升你的 R 语言数据科学技能,那么 绝对值得一试。不论你是新手还是资深开发者,都能从中获益匪浅。现在就开始探索吧!

去发现同类优质开源项目:https://gitcode.com/

What exactly is data science? With this book, you’ll gain a clear understanding of this discipline for discovering natural laws in the structure of data. Along the way, you’ll learn how to use the versatile R programming language for data analysis. Whenever you measure the same thing twice, you get two results—as long as you measure precisely enough. This phenomenon creates uncertainty and opportunity. Author Garrett Grolemund, Master Instructor at RStudio, shows you how data science can help you work with the uncertainty and capture the opportunities. You’ll learn about: Data Wrangling—how to manipulate datasets to reveal new information Data Visualization—how to create graphs and other visualizations Exploratory Data Analysis—how to find evidence of relationships in your measurements Modelling—how to derive insights and predictions from your data Inference—how to avoid being fooled by data analyses that cannot provide foolproof results Through the course of the book, you’ll also learn about the statistical worldview, a way of seeing the world that permits understanding in the face of uncertainty, and simplicity in the face of complexity. Table of Contents Part I. Explore Chapter 1. Data Visualization with ggplot2 Chapter 2. Workflow: Basics Chapter 3. Data Transformation with dplyr Chapter 4. Workflow: Scripts Chapter 5. Exploratory Data Analysis Chapter 6. Workflow: Projects Part II. Wrangle Chapter 7. Tibbles with tibble Chapter 8. Data Import with readr Chapter 9. Tidy Data with tidyr Chapter 10. Relational Data with dplyr Chapter 11. Strings with stringr Chapter 12. Factors with forcats Chapter 13. Dates and Times with lubridate Part III. Program Chapter 14. Pipes with magrittr Chapter 15. Functions Chapter 16. Vectors Chapter 17. Iteration with purrr Part IV. Model Chapter 18. Model Basics with modelr Chapter 19. Model Building Chapter 20. Many Models with purrr and broom Part V. Communicate Chapter 21. R Markdown Chapter 22. Graphics for Communication with ggplot2 Chapter 23. R Markdown Formats Chapter 24. R Markdown Workflow
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

农爱宜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值