自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(107)
  • 收藏
  • 关注

原创 空间转录组主流技术对比与华大Stereo-seq深度解析

空间转录组技术全景解析:测序型与成像型双轨并行 本文系统梳理了空间转录组技术的两大技术范式:测序型(如10x Visium、华大Stereo-seq)和成像型(如Xenium、CosMX)。测序型技术通过空间条形码实现全转录组分析,分辨率从多细胞到亚细胞不等;成像型技术基于原位杂交实现单细胞/亚细胞精度,但基因通量较低。文章重点剖析了华大Stereo-seq的高分辨率特性及其数据结构,同时对比了各平台在分辨率、通量、样本兼容性等方面的技术取舍。本文采用笔记体形式,旨在为研究者提供技术选型参考,并欢迎补充完善

2026-01-01 13:08:05 1018

原创 cancer cell|更“凶”的肉瘤样肾癌,为何反而更“吃”免疫治疗?把 ICB 悖论讲清楚的 多组学研究

更凶的肿瘤,反而更“吃”免疫治疗——这听起来像悖论,却发生在肉瘤样肾癌(sRCC)上。** 这篇 Cancer Cell 用一套非常“顶刊式”的打法,把这个问题从临床现象一路追到机制与转化:多组学(高维流式+单细胞+空间)叠加病理与功能实验,既解释了 sRCC 为什么更可能从 ICB 获益,也把答案落到了可计算的分层标志物(TLS imprint 与 GDS)。

2025-12-30 13:10:11 508

原创 npj Digital Medicine|单细胞 × 空间 × 去卷积:乳腺癌基质-免疫生态的图谱分析与ICB 悖论

低分级乳腺癌里,出现协同富集的“基质-免疫三联体”(CXCR4⁺成纤维、IGKC⁺髓系、CLU⁺内皮),临床表型更“温和”;但这些标志(CXCR4、CLU)在 TIDE 计算里却 倾向 ICB 不应答——也就是“临床分级较好 ≠ 免疫治疗更敏感”

2025-11-03 22:05:45 590

原创 Nature Methods | GHIST vs LOKI:H&E→表达的两条路径 | 单细胞级重建 vs spot级预测

利用HE图像预测空间基因表达,便可在无需额外测序的情况下,为大量既存样本赋予新的“空间转录组”层次,助力肿瘤异质性分析和生物标志物发现

2025-10-20 16:06:06 1052

原创 Nature Methods | LOKI 平台:将空间转录组与 H&E 图像连接的视觉-组学模型 | 让病理切片“看见”基因表达

随着单细胞测序、空间转录组等技术的迅猛发展,科研人员获得了前所未有的细胞和组织水平的基因表达信息。然而,这些丰富的组学数据往往与临床诊断中最常见的 H&E 染色组织切片相互割裂,限制了对组织空间异质性的深度理解。现有基于视觉-语言的基础模型(如 PLIP、OpenAI CLIP)主要用自然语言描述取代分子信息,因此难以反映潜在的分子机制。训练目标是最大化图像-转录组配对的相似度,同时最小化错误配对样本的距离,从而实现空间表达模式的视觉特征捕获。,用以在统一的潜在空间中对齐、解析和预测组学与图像之间的关系。

2025-10-18 07:00:00 849

原创 单细胞分析 | 如何在 Windows 上批量校验测序数据完整性?

在基因组或单细胞测序项目中,我们常常要面对几十到上百个样本、数百 GB 乃至 TB 级的数据。任何一份 FASTQ 文件下载不完整、损坏,都会导致下游分析异常,甚至耽误实验进度。然而,手动挨个跑 `Get-FileHash` 校验 MD5,既费时又容易遗漏。本文介绍一套在 Windows PowerShell 环境下的“**一键批量 MD5 校验并比对**”脚本,让数据完整性检查变得轻松又高效。

2025-10-13 16:29:33 1024

原创 十年医学诺奖复盘:2015–2025 生理或医学诺奖时间线

2015-2025年诺贝尔生理学或医学奖聚焦医学前沿突破,涵盖免疫治疗、基因调控、传染病防治等领域。2025年Treg细胞研究、2024年microRNA发现、2023年mRNA疫苗技术等开创性成果,显著推动了肿瘤免疫、核酸药物和疫苗学发展。其他里程碑包括丙肝病毒发现(2020)、免疫检查点疗法(2018)、氧感应机制(2019)及自噬研究(2016),这些突破深刻影响了疾病治疗策略和人类健康。中国科学家屠呦呦因青蒿素研究(2015)成为首位获此殊荣的中国本土科学家。十年间诺奖成果展现出医学研究从基础到临床

2025-10-11 15:30:00 3102

原创 2025 年诺贝尔生理学或医学奖:外周免疫耐受的发现与影响

Mary E. Brunkow、Fred Ramsdell 与 坂口志文的工作揭示了免疫系统的“自我克制”机制。他们证明胸腺选择之外存在外周免疫耐受,由Treg/FOXP3 轴维持。这一发现不仅解释了自身免疫病机制,还开启了精准免疫治疗的新纪元。未来展望优化 Treg 稳态与抗原特异性建立 CAR-Treg 与 IL-2 联合疗法实现免疫治疗从“攻”到“守”的平衡。

2025-10-10 16:51:55 1695

原创 细胞建模“图灵测试”:解析学习虚拟细胞挑战赛

《虚拟细胞挑战赛:为细胞预测模型建立"图灵测试"》 Cell近期提出首届"虚拟细胞挑战赛",旨在解决AI细胞预测模型缺乏统一评测标准的问题。挑战赛通过公开数据集(30万单细胞转录组数据)和多维指标(差异表达评分、扰动判别评分等),评估模型对新基因敲低反应的预测能力。亮点包括:聚焦上下文泛化能力、高质量专属数据集、开源协作机制。该赛事有望推动虚拟细胞技术标准化,并为药物开发提供新工具。赛事官网已开放,欢迎跨领域研究者参与。

2025-07-03 11:04:08 1398

原创 Nature|张泽民团队提出CM模型新视角 | 单细胞如何走向系统生态?|细胞模块概念新研究范式

今天分享最近学习的 Nature 重磅新作,来自张泽民院士团队,提出了一个非常有意思的新概念:跨组织细胞模块(CM)。

2025-06-01 10:43:01 1361

原创 Cancer Cell|从临床病例到AI空间组学 | 空间生物标志物如何精准预测HER2阳性乳腺癌ADC疗效?

今天继续解读一篇从临床问题出发,应用组学+AI,最后再回归临床实际需求的高水平研究。这篇论文不仅聚焦真实的临床痛点,更展示了如何用多模态组学与人工智能技术深度剖析机制,最终反哺临床,实现精准医学落地。

2025-05-28 19:53:41 1358

原创 Nat Commun|从临床试验到单细胞组学 | 从这篇研究中学习怎么做到“临床-组学-机制闭环”

从临床试验到机制闭环,该文献展现出近年来免疫治疗研究的一个重要趋势:跨越临床和组学边界,推进“显微层面”的精准肿瘤学探索。对关注肿瘤免疫、空间组学与临床转化研究的科研人员来说,这篇值得研读和学习。

2025-05-20 23:27:23 1392

原创 EAU 上尿路尿路上皮癌(UTUC)指南精读⑥|RNU术式、膀胱袖口、LND | 外科技术与循证证据拆解、科研启发

本文内容基于欧洲泌尿外科学会(EAU)2025年最新版《上尿路尿路上皮癌(UTUC)》指南的整理

2025-05-08 16:00:33 1102

原创 EAU 上尿路尿路上皮癌(UTUC)指南精读④ 治疗前,我们真的分清“高危”了吗?|风险分层模型详解与科研延伸

本文为“指南精读 × 科研启发”系列第④篇,延续前一篇对“分期与分级系统”的解读,本篇将系统梳理EAU对“风险分层模型”的定义与实践路径,并讨论其背后的科研切入点。

2025-05-08 15:54:04 1431 1

原创 2025 EAU UTUC指南学习笔记③:诊断策略精读——从症状到活检,如何科学判断治疗路径?

本文聚焦UTUC的诊断策略,全面梳理影像学检查、尿液学检测、内镜评估与活检手段,并结合指南推荐等级,提出科研视角的思考。

2025-05-08 15:48:13 2541

原创 2025 EAU UTUC指南学习笔记②:分期分级全梳理,科研的靶点可能藏在分层逻辑中

本文为“泌尿肿瘤指南精读”系列,围绕EAU 2025最新版《上尿路尿路上皮癌(UTUC)》指南第4章“分期与分级系统”展开,聚焦于TNM系统与病理分级的更新重点,并探讨其中潜藏的科研选题与转化方向。

2025-05-08 15:35:53 1785

原创 iMeta | 临床研究+scRNA-seq的组合思路 | 真实世界新辅助研究,HER2⁺就一定受益?单细胞揭示真正的“疗效敏感克隆”

近年来,临床医学与单细胞组学的结合开启了全新的研究范式,让临床医生能以“显微镜”般的精度,深入理解疾病机制与疗效预测。这次就以一篇2025年发表在iMeta文献,理解这一模式。

2025-05-06 21:59:02 655

原创 Cancer Cell|scRNA-seq + scTCR + 空间多组学整合分析,揭示CD8⁺ T细胞在免疫治疗中的“双路径” | 临床问题的组学解答

近日,《Cancer Cell》刊登一篇研究系统分析了新辅助免疫治疗中CD8⁺ T细胞的谱系动态,并揭示两种组合免疫策略截然不同的作用路径。研究数据量超过37万细胞,集成scRNA-seq、scTCR-seq、CITE-seq与空间蛋白数据,构建了具有转化价值的CD8⁺ T细胞图谱。

2025-04-25 20:21:53 1907

原创 Cell | Cell Research|虚拟细胞这件事,可能正在开启一个科研新时代 | 数字生命系统不是梦 | “AI细胞工厂”要实现了?

这篇评论文章以系统化的形式提出了构建 AIVC 的概念图谱,不仅指出当前需要的数据类型、实验策略,也提出从酵母等模型系统入手、再扩展至人类癌症细胞系的逐步实施建议。其核心贡献在于:为虚拟细胞的发展提出了清晰的阶段模型、技术依赖与实验协同方式。对应关系Cell, 2024文献类型评论文章系统综述(Perspective)核心定位提出“三大数据支柱 + 闭环系统”的建构策略提出“UR + VI 模型体系”的完整架构与愿景相互关系实施建议与优先细胞建模对象推荐总体蓝图与平台化协作路径。

2025-04-21 06:00:00 3070

原创 EAU 上尿路尿路上皮癌(UTUC)指南精读⑦ | 局部高风险UTUC如何治疗| 围手术系统治疗 & 辅助治疗路径解读

围手术治疗包括术前(neoadjuvant)和术后(adjuvant)策略,EAU指南对二者分别提出评估建议和证据基础:

2025-04-20 14:45:01 1209

原创 EAU 上尿路尿路上皮癌(UTUC)指南精读⑤ | 低风险UTUC患者保肾治疗 |治疗策略、技术路径与科研启发

本文聚焦UTUC的诊断策略,全面梳理影像学检查、尿液学检测、内镜评估与活检手段,并结合指南推荐等级,提出科研视角的思考。

2025-04-13 12:50:23 2054

原创 scRNA-seq实用分析模块 | 双细胞去除篇 | 基于DoubletFinder的流程与代码

在单细胞转录组测序(scRNA-seq)实验中,双细胞(doublets)是指两个或多个细胞被分配到同一条形码(barcode)并被误识别为单个细胞的现象。这类技术伪影在下游分析中可能导致细胞类型定义失真、伪聚类形成、差异表达结果失真及发育轨迹重建偏差。因此,建立合理且高效的双细胞识别流程是保障数据分析可信性的关键步骤之一。双细胞是 scRNA-seq 分析中常见的技术误差,尤其在细胞密度较大或上样量偏高的实验中发生率提升;

2025-04-12 06:30:00 1979

原创 Cell Genomics|从跨癌种的数据中,找到一个预测免疫治疗应答的signature| 单细胞+TCR数据,看懂免疫治疗谁能响应?| 一套跨癌种的预测模型

解读一篇Cell Genomics 近期上线的一项工作(Shorer et al., 2025)Single-cell meta-analysis of T cells reveals clonal dynamics of response to checkpoint immunotherapy,为“如何识别免疫治疗受益者”这个核心问题,带来了新思路。

2025-04-10 17:56:26 1522

原创 2025 EAU UTUC指南学习笔记1:从定义到分子背景,科研的起点就在临床问题里

此前聚焦于文献解读与单细胞组学研究。近期将开启“精读临床指南”系列,我尝试从临床真实需求出发,系统梳理泌尿肿瘤领域的诊疗逻辑,寻找可以转化为科研问题的落地点,推动科研与临床的高效对接。

2025-04-09 10:27:53 1251

原创 Cell|单细胞+bulk+机制串成一条线 | 教你怎么从组学走到机制验证 | ARID1A是怎么一步步激活免疫的?

解读这篇发表于 2024 年 Cell 的研究时,我最深的感受是它在组学分析与分子机制实验上的双重完整性。无论是 scRNA-seq 对肿瘤免疫谱系的刻画,还是通路的机制验证,每一部分都具备独立成篇的深度与严谨性。

2025-04-03 10:00:36 775

原创 Nature旗下 | npj Digital Medicine | 图像+转录组+临床变量三合一,多模态AI预测化疗反应,值得复现学习的完整框架

膀胱癌是全球发病率第10的癌种,其中**肌层浸润性膀胱癌(MIBC)治疗手段以“新辅助化疗(NAC)+ 根治性膀胱切除(RC)”**为标准方案。仅**30~35%**患者在NAC后可获得完全病理缓解(pCR);NAC药物存在明显毒副作用,且若无效会延误手术;临床目前仍是“”的经验式用药决策。🔴如何在治疗前识别“谁会对NAC真正获益”?这是精准医疗、尤其是泌尿肿瘤领域迫切需要解决的关键问题。这篇文章展示了如何将AI真正嵌入肿瘤治疗决策之中,既有预测力,也有生物解释力,是值得反复学习的典范。

2025-04-02 14:01:22 1666

原创 Immunity|这个在线平台直接告诉你哪些靶点值得投,还能预测免疫治疗效果 | 清华北大联合开发 | ICRAFT平台如何重塑肿瘤免疫靶点筛选逻辑?

ICRAFT平台是靶点发现逻辑的一次革新,它不仅能“挖掘得准”,还能“落地得稳”——这正是《Immunity》认可的科学价值。

2025-04-01 06:45:00 1506

原创 Cancer Cell综述 | 免疫治疗虽好,但谁能真正受益?| 预测标志物全景

从单一指标 → 多模态整合从静态特征 → 动态状态从分子表达 → 细胞功能+结构位置这为免疫治疗未来的精准预测和个体化治疗奠定了理论基础,也为科研工作者提供了系统性的研究框架。

2025-03-31 13:37:19 867

原创 Cell | 张泽民团队又出新作!如何用“细胞比例”重构免疫亚型,预测肺癌复发?|免疫亚型+Texp指标+复发预测,一个单细胞研究怎么做到临床落地?

非小类肺癌(NSCLC)是全球致死率最高的癌科,即使接受手术,仍有30%以上的处于复发风险。新辅助PD-1抑制剂+化疗已成为标准治疗,但同样治疗下,有人完全复发,有人长期无复发?【问题核心:现有MPR/pCR指标能否精准分层?单细胞+TCR数据进行免疫层次结构分析如何通过比例矩阵+NMF进行职能型聚类Texp 和 Tex-relevant 的分类方法、CCR8免疫抑制关键分析。

2025-03-28 10:44:35 1364

原创 文献学习:单细胞+临床+模型构建 | 一篇Molecular Cancer文献如何完整解读CDK4/6i耐药机制

近年来,随着 CDK4/6 抑制剂(CDK4/6i)联合内分泌治疗(如芳香化酶抑制剂、fulvestrant)的广泛应用,显著延长了这类患者的无进展生存期(PFS),成为临床一线标准。,通过单细胞数据可视化(UMAP、热图、GSEA等)深入揭示了 CDK4/6i 治疗反应性与耐药过程的分子特征,以下从关键图(Figure 1–5)提炼几个重点发现。通过图示解读,我们可以看出本研究逻辑严密、数据表达清晰,不仅揭示了 CDK4/6i 相关的分子机制,也建立了全链条分析框架,是值得深入学习与借鉴的经典范例。

2025-03-26 23:10:56 1671

原创 肿瘤相关巨噬细胞的代谢调控梳理|通路、功能亚群与干预策略综述

近年来的研究逐渐揭示,代谢重编程不仅是肿瘤细胞的特征,更是免疫细胞功能命运因素。特别是在复杂的肿瘤微环境(TME)中,TAM因其高度的可塑性和免疫调控能力,成为抗肿瘤免疫治疗的重要影响因素和潜在干预靶点。

2025-03-24 11:38:37 1487

原创 Nature Cancer | 代谢如何决定巨噬细胞的“性格”?一文梳理TAM功能背后的代谢线路图 | 这组TAM代谢机制机制图学习起来

在肿瘤免疫研究中,我们往往聚焦于T细胞、免疫检查点等“主角”。然而,近年来越来越多研究表明,在大多数实体瘤中,**肿瘤相关巨噬细胞(TAMs)不仅数量可观,且在免疫逃逸、治疗耐受、转移进展中发挥着核心作用**。如何理解这些“沉默的调控者”?

2025-03-23 17:27:36 1690

原创 文献学习:没用花哨算法 | 从单细胞到空间验证,学习怎么讲清一个细胞通讯的完整故事 | “经典单细胞方法”串出了一个分子机制

本文解读一篇发表在 *Journal of Experimental & Clinical Cancer Research*(JECCR,2025)的文章Single-cell transcriptomics identify a novel macrophage population associated with bone invasion in pituitary neuroendocrine tumors,该研究聚焦垂体神经内分泌瘤(PitNET)骨侵犯,通过单细胞+空间转录组技术,定义了

2025-03-22 13:06:32 762

原创 单细胞分析(29)——单细胞数据中细胞比例的可视化 | Figure1中应有的图 | 饼图、甜甜圈图、堆积柱状图

在单细胞转录组数据分析中,细胞类型的比例分布可以通过饼图、甜甜圈图和堆积柱状图来直观展示。这些图表可以用于比较不同样本、组别或条件下的细胞组成情况。

2025-03-20 06:45:00 1256

原创 免疫治疗响应预测 | 单细胞多组学如何揭示ICB疗效标志物?| 泛癌层面研究

近年来,免疫检查点抑制剂(ICB) 作为肿瘤免疫治疗的重要突破,为多种癌症患者带来了生存获益。然而,ICB疗效存在显著的个体差异,仅有20-30% 的患者能够显著获益,因此迫切需要精准的预测模型来筛选适合接受ICB治疗的患者。

2025-03-19 07:15:00 2316

原创 CellOracle|基因扰动研究基因功能|基因调控网络+虚拟干预

细胞身份(Cell Identity)由基因调控网络(Gene Regulatory Network, GRN)决定,而GRN是由转录因子(Transcription Factors, TFs)调控基因表达构成的复杂网络。传统研究方法依赖于实验手段(如CRISPR筛选),但这些方法成本高、周期长,并且在某些生物体系(如人类胚胎)中难以实现。为解决这些问题,作者提出了一种新的计算方法——,在造血系统、斑马鱼胚胎等多个体系中成功应用,量化了 TF 的调控强度和不确定性。

2025-03-17 13:30:58 1835

原创 大数据助力精准医疗 | CMap 的下一步?| 结合药物基因组学和化学信息学的创新探索 |Pathopticon 计算框架筛选候选药物

在精准医学和计算系统药理学蓬勃发展的今天,如何高效筛选精准靶向药物,成为药物发现和药物重定位(drug repurposing)领域的重要挑战。最近,一项发表在Genome Medicine的研究,提出了Pathopticon 计算框架,集成了药物基因组学(pharmacogenomics)、化学信息学(cheminformatics)和多种疾病表型数据,为精准药物筛选提供了新的思路。

2025-03-15 16:17:30 1506

原创 AI+多组学,精准预测乳腺癌复发:怎么做预测模型的研究

利用机器学习技术,精准预测 HR+/HER2- 乳腺癌患者的复发风险。这项研究数据量大、数据质量高,并进行了严格的机器学习模型训练,提供了比传统预测方法更精准的风险评估工具。然而,如何整合这些数据,并利用 AI 技术进行深度分析,仍然是一个挑战。因此,研究团队构建了。随着 AI 和多组学技术的不断发展,这项研究的思路或许将在其他癌种预测和精准治疗中得到进一步推广,为肿瘤个体化治疗带来新的可能!,实现了对 HR+/HER2- 乳腺癌复发风险的精准预测。,以期突破现有模型的局限,提高乳腺癌复发预测的准确性。

2025-03-14 10:33:47 1708

原创 单细胞分析——深度学习赋能细胞通讯解析:除了CellPhoneDB,还可以用scDCA!

在生物研究中,细胞间通信 (Cell-Cell Communication, CCC) 是调控生理功能和疾病进展的重要机制。近年来,单细胞 RNA 测序 (scRNA-seq) 技术的兴起,使得研究者可以从单细胞层面探究细胞如何相互影响。但现有的许多方法(如 CellPhoneDB、CellChat、NicheNet)通常只计算 配体-受体 (L-R) 互作,而无法明确哪些细胞通信对特定的 下游功能事件(如基因表达、细胞状态) 影响最显著。

2025-03-13 16:00:00 1110

原创 单细胞分析(26)——Monocle3 拟时序分析

Monocle3 是一种基于单细胞RNA测序(scRNA-seq)数据的轨迹推断方法,旨在模拟细胞随时间变化的轨迹,推测其潜在的发育或状态转换路径。它通过无监督学习方法,基于细胞的转录组相似性,构建细胞状态的拓扑结构。

2025-03-12 08:56:57 5490

HumanPrimaryCellAtlas-hpca.se-human.RData 单细胞singleR注释参考图谱

单细胞singleR注释参考图谱,可用于singleR的本地使用,有些朋友网络问题,可以直接使用这些内容

2023-11-20

BlueprintEncode-bpe.se-human.RData 单细胞singleR注释参考文件

单细胞singleR注释参考文件,可在本地使用

2023-11-20

IMvigor210CoreBiologies安装包+数据

IMvigor210CoreBiologies在文档中已经不能下载,整理之后,放在此处。 (1)压缩包中,Rdata数据是从IMvigor210CoreBiologies提取出来的相关数据,包括相关的测序数据、临床表型数据。 (2)IMvigor210CoreBiologies_1.0.0.tar是IMvigor210CoreBiologies的安装包。

2023-02-10

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除