墨西哥政府报告文本分析项目教程
1. 项目目录结构及介绍
mexican-government-report/
├── data/
│ ├── informe.pdf
│ ├── transcript_clean.txt
│ ├── tokens.csv
│ ├── entities.csv
│ └── sentences.csv
├── figs/
├── scripts/
│ ├── extract_text.py
│ ├── nlp_pipeline.py
│ └── sentiment_analysis.py
├── LICENSE
├── README.md
├── infographic-es.png
└── requirements.txt
目录结构介绍
-
data/: 存放项目所需的数据文件,包括原始PDF文件、清洗后的文本文件以及生成的CSV文件。
informe.pdf
: 墨西哥政府2019年的报告PDF文件。transcript_clean.txt
: 从PDF中提取并清洗后的文本文件。tokens.csv
: 文本分词后的结果文件。entities.csv
: 文本实体识别后的结果文件。sentences.csv
: 文本句子情感分析后的结果文件。
-
figs/: 存放生成的图表文件。
-
scripts/: 存放项目的Python脚本文件。
extract_text.py
: 用于从PDF文件中提取文本的脚本。nlp_pipeline.py
: 用于处理文本的自然语言处理(NLP)管道脚本。sentiment_analysis.py
: 用于进行情感分析的脚本。
-
LICENSE: 项目的开源许可证文件。
-
README.md: 项目的介绍和使用说明文件。
-
infographic-es.png: 项目生成的信息图表文件。
-
requirements.txt: 项目所需的Python库依赖列表。
2. 项目启动文件介绍
项目的启动文件主要位于scripts/
目录下,包括以下几个主要脚本:
-
extract_text.py: 该脚本用于从PDF文件中提取文本。主要步骤包括:
- 使用
PyPDF2
库读取PDF文件。 - 提取PDF中的文本并进行清洗,去除页码和特殊字符。
- 将清洗后的文本保存为
transcript_clean.txt
文件。
- 使用
-
nlp_pipeline.py: 该脚本用于处理文本的自然语言处理(NLP)管道。主要步骤包括:
- 加载清洗后的文本文件。
- 使用
spaCy
库进行文本分词、词性标注、实体识别等操作。 - 将处理结果保存为CSV文件,包括
tokens.csv
和entities.csv
。
-
sentiment_analysis.py: 该脚本用于进行情感分析。主要步骤包括:
- 加载情感词典(正向和负向词汇)。
- 对文本句子进行情感评分。
- 将情感分析结果保存为
sentences.csv
文件。
3. 项目配置文件介绍
项目的配置文件主要包括以下几个部分:
-
requirements.txt: 该文件列出了项目所需的Python库依赖。可以通过以下命令安装所有依赖:
pip install -r requirements.txt
-
README.md: 该文件包含了项目的介绍、使用说明以及安装步骤。用户可以通过阅读该文件了解项目的整体情况和使用方法。
-
LICENSE: 该文件包含了项目的开源许可证信息,说明项目的使用条款和条件。
通过以上介绍,您可以更好地理解和使用mexican-government-report
项目。