Geometric Vector Perceptron (GVP) 开源项目指南

Geometric Vector Perceptron (GVP) 开源项目指南

gvp gvp 项目地址: https://gitcode.com/gh_mirrors/gvp/gvp

1. 目录结构及介绍

GVP项目遵循清晰的组织结构,确保开发者能够快速定位关键组件。以下是其主要目录及其简要介绍:

  • [.git] — Git版本控制相关文件。
  • [data] — 包含数据处理脚本getCATH.sh用于获取CATH 4.2数据库,以及必要的数据预处理逻辑。
  • [models] — 预训练模型存放处,如cath_pretrained,供实验使用。
  • [outputs] — 训练和评估结果的保存位置,便于分析。
  • [src]
    • [datasets.py] — 数据集加载和预处理的实现。
    • [GVP.py] — 核心GVP层的定义,包括GVP本身、dropout和层归一化模块。
    • [test_cpd_{perplexity,recovery}.py] — 分别用于评估模型困惑度和恢复能力的脚本。
    • [train_cpd.py] — 模型训练脚本,针对CATH 4.2数据集。
    • [analyze.py] — 用于分析评估结果的脚本。
    • [models.py] — 定义基于GVP的蛋白质GNN模型,如MQAModel和CPDModel。

2. 项目启动文件介绍

主要启动文件:[train_cpd.py]

此脚本是启动模型训练的核心。通过指定完整的CATH 4.2数据集路径(例如/data/chain_set.jsonl)作为参数,可以开始模型训练过程。它利用提供的数据进行模型的学习,并在每个epoch后将模型检查点保存到models/目录下。

python3 src/train_cpd.py /data/chain_set_jsonl

测试与评估脚本

  • [test_cpd_perplexity.py][test_cpd_recovery.py] 用于在模型训练后进行性能验证。需指定模型路径和相应的测试集。
python3 src/test_cpd_perplexity.py /models/cath_pretrained
python3 src/test_cpd_recovery.py /models/cath_pretrained /data/chain_set_test_jsonl outputs/recovery_results.txt

3. 项目配置文件介绍

GVP项目中并没有传统的单一配置文件模式,而是通过命令行参数和环境设置来配置项目运行。重要的是通过脚本调用时传入的参数,比如训练脚本中的数据集路径、测试脚本中使用的模型路径等。这意味着配置信息分布于各个脚本的参数和依赖的环境变量中。

  • 环境与依赖: 项目依赖于特定版本的Python库(如TensorFlow 2.1.0),这些依赖项应通过requirements.txt文件管理或直接在环境中安装。

对于更高级的定制需求,开发者可能需要直接修改源代码中的超参数或添加额外的脚本来适应特定的数据预处理或模型调整需求。虽然没有独立的配置文件,但项目的设计允许通过代码内部的变量和脚本参数实现灵活配置。因此,调整这些脚本中的变量即可视为一种配置方式。

gvp gvp 项目地址: https://gitcode.com/gh_mirrors/gvp/gvp

数据集介绍:无人机视角水域目标检测数据集 一、基础信息 数据集名称:无人机视角水域目标检测数据集 图片数量: - 训练集:2,752张图片 - 验证集:605张图片 分类类别: - Boat(船只):水域交通与作业场景中的常见载具 - Buoy(浮标):水域导航与安全标志物 - Jetski(喷气滑艇):高速水上运动载具 - Kayak(皮划艇):小型人力划桨船只 - Paddle_board(桨板):休闲运动类浮板 - Person(人员):水域活动参与者的目标检测 标注格式: YOLO格式标注,含目标边界框与类别标签,适配主流目标检测框架 数据特性: 无人机航拍视角数据,覆盖不同高度与光照条件的水域场景 二、适用场景 水域智能监测系统开发: 支持构建船只流量统计、异常行为检测等水域管理AI系统 水上救援辅助系统: 用于训练快速定位落水人员与小型船只的检测模型 水上运动安全监控: 适配冲浪区、赛艇场等场景的运动安全预警系统开发 环境生态研究: 支持浮标分布监测、水域人类活动影响分析等研究场景 三、数据集优势 视角独特性: 纯无人机高空视角数据,有效模拟真实航拍检测场景 目标多样性: 覆盖6类水域高频目标,包含动态载具与静态标志物组合 标注精准性: 严格遵循YOLO标注规范,边界框与目标实际尺寸高度吻合 场景适配性: 包含近岸与开阔水域场景,支持模型泛化能力训练 任务扩展性: 适用于目标检测、运动物体追踪等多任务模型开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明俪钧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值