开源项目安装与配置指南——基于Kaggle Avazu数据集的点击率预测

开源项目安装与配置指南——基于Kaggle Avazu数据集的点击率预测

kaggle-avazu kaggle-avazu 项目地址: https://gitcode.com/gh_mirrors/kag/kaggle-avazu

1. 项目基础介绍

本项目是基于Kaggle Avazu数据集的一个点击率(Click-Through Rate, CTR)预测项目。该数据集包含了广告投放的相关信息,项目的目标是预测用户是否会点击广告。项目使用了“field-aware factorization machines”模型进行预测,这是一种能够处理稀疏高维数据的机器学习算法。

本项目主要使用的编程语言为Python和C++。

2. 项目使用的关键技术和框架

  • Field-Aware Factorization Machines (FFM): 用于CTR预测的算法,能够处理每个字段间的相互作用。
  • libffm: FFM算法的C++实现库。
  • Python: 用于数据处理和模型训练的脚本编写。
  • pandas: Python数据分析库,用于数据处理。

3. 项目安装和配置的准备工作

在开始安装之前,请确保您的系统满足以下要求:

  • 操作系统:64位的类Unix操作系统(如Linux或macOS)。
  • Python版本:Python 3。
  • 编译器:支持C++11和OpenMP的g++编译器。
  • pandas库:如果需要运行bag部分,则需要安装pandas库。

安装步骤

  1. 克隆项目仓库

    首先,需要将项目克隆到本地:

    git clone https://github.com/ycjuan/kaggle-avazu.git
    cd kaggle-avazu
    
  2. 安装Python依赖

    如果系统没有安装pandas库,可以使用以下命令安装:

    pip install pandas
    
  3. 编译FFM库

    进入libffm目录,根据提供的Makefile进行编译:

    cd libffm
    make
    cd ..
    
  4. 准备数据

    将训练集和测试集的数据文件路径链接到项目目录中:

    ln -sf <训练集路径> tr.r0.csv
    ln -sf <测试集路径> va.r0.csv
    

    替换<训练集路径><测试集路径>为实际的数据文件路径。

  5. 添加测试集的虚拟标签

    运行以下脚本为测试集添加一个虚拟标签:

    ./add_dummy_label.py <测试集路径> va.r0.csv
    
  6. 运行示例脚本

    可以运行一个示例脚本来检验安装是否成功:

    ./run.sh x
    
  7. 开始训练模型

    如果示例脚本运行无误,可以开始训练模型:

    ./run.sh 0
    

    训练完成后,会生成一个名为base.r0.prd的预测文件。

以上就是该开源项目的详细安装和配置指南。请按照以上步骤进行操作,如果有任何问题,请参考项目文档或向社区寻求帮助。

kaggle-avazu kaggle-avazu 项目地址: https://gitcode.com/gh_mirrors/kag/kaggle-avazu

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明俪钧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值