开源项目安装与配置指南——基于Kaggle Avazu数据集的点击率预测
kaggle-avazu 项目地址: https://gitcode.com/gh_mirrors/kag/kaggle-avazu
1. 项目基础介绍
本项目是基于Kaggle Avazu数据集的一个点击率(Click-Through Rate, CTR)预测项目。该数据集包含了广告投放的相关信息,项目的目标是预测用户是否会点击广告。项目使用了“field-aware factorization machines”模型进行预测,这是一种能够处理稀疏高维数据的机器学习算法。
本项目主要使用的编程语言为Python和C++。
2. 项目使用的关键技术和框架
- Field-Aware Factorization Machines (FFM): 用于CTR预测的算法,能够处理每个字段间的相互作用。
- libffm: FFM算法的C++实现库。
- Python: 用于数据处理和模型训练的脚本编写。
- pandas: Python数据分析库,用于数据处理。
3. 项目安装和配置的准备工作
在开始安装之前,请确保您的系统满足以下要求:
- 操作系统:64位的类Unix操作系统(如Linux或macOS)。
- Python版本:Python 3。
- 编译器:支持C++11和OpenMP的g++编译器。
- pandas库:如果需要运行
bag
部分,则需要安装pandas库。
安装步骤
-
克隆项目仓库
首先,需要将项目克隆到本地:
git clone https://github.com/ycjuan/kaggle-avazu.git cd kaggle-avazu
-
安装Python依赖
如果系统没有安装pandas库,可以使用以下命令安装:
pip install pandas
-
编译FFM库
进入
libffm
目录,根据提供的Makefile进行编译:cd libffm make cd ..
-
准备数据
将训练集和测试集的数据文件路径链接到项目目录中:
ln -sf <训练集路径> tr.r0.csv ln -sf <测试集路径> va.r0.csv
替换
<训练集路径>
和<测试集路径>
为实际的数据文件路径。 -
添加测试集的虚拟标签
运行以下脚本为测试集添加一个虚拟标签:
./add_dummy_label.py <测试集路径> va.r0.csv
-
运行示例脚本
可以运行一个示例脚本来检验安装是否成功:
./run.sh x
-
开始训练模型
如果示例脚本运行无误,可以开始训练模型:
./run.sh 0
训练完成后,会生成一个名为
base.r0.prd
的预测文件。
以上就是该开源项目的详细安装和配置指南。请按照以上步骤进行操作,如果有任何问题,请参考项目文档或向社区寻求帮助。
kaggle-avazu 项目地址: https://gitcode.com/gh_mirrors/kag/kaggle-avazu
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考