CMeKG_tools 项目使用教程
CMeKG_tools 项目地址: https://gitcode.com/gh_mirrors/cm/CMeKG_tools
1. 项目目录结构及介绍
CMeKG_tools/
├── __pycache__/
├── model_cws/
├── model_ner/
├── model_re/
├── LICENSE
├── README.md
├── cws_constant.py
├── medical_cws.py
├── medical_ner.py
├── ner_constant.py
├── predicate.json
├── train_cws.py
├── train_example.json
├── train_ner.py
├── utils.py
目录结构说明
__pycache__/
: Python 缓存文件目录。model_cws/
: 医学文本分词模型相关文件。model_ner/
: 医学实体识别模型相关文件。model_re/
: 医学关系抽取模型相关文件。LICENSE
: 项目许可证文件。README.md
: 项目说明文件。cws_constant.py
: 医学文本分词常量配置文件。medical_cws.py
: 医学文本分词工具文件。medical_ner.py
: 医学实体识别工具文件。ner_constant.py
: 医学实体识别常量配置文件。predicate.json
: 关系抽取的谓词文件。train_cws.py
: 医学文本分词训练脚本。train_example.json
: 训练示例文件。train_ner.py
: 医学实体识别训练脚本。utils.py
: 工具函数文件。
2. 项目启动文件介绍
medical_cws.py
该文件是医学文本分词工具的启动文件。它提供了两个主要接口:
predict_sentence(sentence)
: 用于测试单个句子,返回分词结果。predict_file(input_file, output_file)
: 用于测试整个文件,返回分词结果。
medical_ner.py
该文件是医学实体识别工具的启动文件。它提供了两个主要接口:
predict_sentence(sentence)
: 用于测试单个句子,返回实体识别结果。predict_file(input_file, output_file)
: 用于测试整个文件,返回实体识别结果。
train_cws.py
该文件是医学文本分词模型的训练启动文件。通过运行该脚本,可以训练医学文本分词模型。
train_ner.py
该文件是医学实体识别模型的训练启动文件。通过运行该脚本,可以训练医学实体识别模型。
3. 项目的配置文件介绍
cws_constant.py
该文件包含了医学文本分词模型的配置参数,如模型路径、训练参数等。
ner_constant.py
该文件包含了医学实体识别模型的配置参数,如模型路径、训练参数等。
predicate.json
该文件包含了关系抽取的谓词信息,用于定义医学关系抽取中的关系类型。
train_example.json
该文件是训练示例文件,包含了训练数据的基本格式和示例。
通过以上配置文件,用户可以根据自己的需求调整模型的训练和使用参数。
CMeKG_tools 项目地址: https://gitcode.com/gh_mirrors/cm/CMeKG_tools