推荐:实时美国手语翻译项目——sign2text
去发现同类优质开源项目:https://gitcode.com/
1、项目介绍
sign2text 是一个创新的开源项目,它利用人工智能技术实现实时将美国手语(American Sign Language,ASL)的手势字母翻译成文本。通过深度学习的方法,这个系统能够识别并转换26个英文手指拼写字母。在Data Science Retreat柏林第九期中,该项目被开发作为作者的个人作品展示。
2、项目技术分析
项目采用转移学习策略,首先提取图像特征,然后使用自定义分类模块进行字母识别。具体来说,模型可以基于[VGG16][1]、[ResNet50][2]或[MobileNet][3]这三种预训练网络进行初始化,并且可以在OpenCV的帮助下,读取摄像头的帧数据,实时地对每一帧进行处理和分类。在AWS EC2的GPU实例上运行该模型,性能有显著提升。
3、项目及技术应用场景
美国手语是许多听障人士的主要交流工具,估计有数百万到千万的人口使用。sign2text项目为这些人与非手语使用者之间的沟通提供了一座桥梁。它有助于:
- 姓名拼写:手语使用者可以用手指拼出自己的名字。
- 强调表达:对于关键信息,直接用手语拼出单词以加强语气。
- 词汇拓展:对于ASL词汇表中未收录的新词,可以通过手指拼写来传达。
4、项目特点
- 实时性:运用OpenCV捕捉并处理视频流,实现每秒多帧的实时翻译。
- 高效模型:支持多种预训练模型,其中MobileNet在CPU上的运行效率最高。
- 广泛的数据集:训练数据来源于公开的Massey大学数据子集,已预先处理并按字母划分。
使用方法
只需通过python live_demo.py
运行脚本,并选择预训练模型,即可启动实时演示。项目依赖于OpenCV、Keras、TensorFlow等库,确保这些库安装正确后,便能在本地计算机上体验手语实时翻译的魅力。
[[1]: https://keras.io/applications/#vgg16] [[2]: https://keras.io/applications/#resnet50] [[3]: https://keras.io/applications/#mobilenet]
sign2text 是一项具有深远社会影响的技术成果,它不仅提高了聋哑人社区与外界的交流效率,也为未来更复杂的手语识别和翻译技术铺平了道路。我们鼓励开发者探索、改进并参与这个项目,共同推动无障碍通信的进步。
去发现同类优质开源项目:https://gitcode.com/
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考