推荐:实时美国手语翻译项目——sign2text

推荐:实时美国手语翻译项目——sign2text

去发现同类优质开源项目:https://gitcode.com/

1、项目介绍

sign2text 是一个创新的开源项目,它利用人工智能技术实现实时将美国手语(American Sign Language,ASL)的手势字母翻译成文本。通过深度学习的方法,这个系统能够识别并转换26个英文手指拼写字母。在Data Science Retreat柏林第九期中,该项目被开发作为作者的个人作品展示。

2、项目技术分析

项目采用转移学习策略,首先提取图像特征,然后使用自定义分类模块进行字母识别。具体来说,模型可以基于[VGG16][1]、[ResNet50][2]或[MobileNet][3]这三种预训练网络进行初始化,并且可以在OpenCV的帮助下,读取摄像头的帧数据,实时地对每一帧进行处理和分类。在AWS EC2的GPU实例上运行该模型,性能有显著提升。

3、项目及技术应用场景

美国手语是许多听障人士的主要交流工具,估计有数百万到千万的人口使用。sign2text项目为这些人与非手语使用者之间的沟通提供了一座桥梁。它有助于:

  • 姓名拼写:手语使用者可以用手指拼出自己的名字。
  • 强调表达:对于关键信息,直接用手语拼出单词以加强语气。
  • 词汇拓展:对于ASL词汇表中未收录的新词,可以通过手指拼写来传达。

4、项目特点

  • 实时性:运用OpenCV捕捉并处理视频流,实现每秒多帧的实时翻译。
  • 高效模型:支持多种预训练模型,其中MobileNet在CPU上的运行效率最高。
  • 广泛的数据集:训练数据来源于公开的Massey大学数据子集,已预先处理并按字母划分。

使用方法

只需通过python live_demo.py运行脚本,并选择预训练模型,即可启动实时演示。项目依赖于OpenCV、Keras、TensorFlow等库,确保这些库安装正确后,便能在本地计算机上体验手语实时翻译的魅力。

[[1]: https://keras.io/applications/#vgg16] [[2]: https://keras.io/applications/#resnet50] [[3]: https://keras.io/applications/#mobilenet]

sign2text 是一项具有深远社会影响的技术成果,它不仅提高了聋哑人社区与外界的交流效率,也为未来更复杂的手语识别和翻译技术铺平了道路。我们鼓励开发者探索、改进并参与这个项目,共同推动无障碍通信的进步。

去发现同类优质开源项目:https://gitcode.com/

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秦贝仁Lincoln

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值