讯飞星火大模型Python SDK安装与使用指南
spark-ai-python 星火大模型 python sdk库 项目地址: https://gitcode.com/gh_mirrors/sp/spark-ai-python
1. 项目目录结构及介绍
spark-ai-python
是一个旨在简化访问讯飞星火大模型的Python SDK库。以下是其基本的目录结构和各部分简介:
spark-ai-python/
├── github/workflows # GitHub Actions的工作流程配置
├── integration_tests # 集成测试相关文件
├── sparkaisparkai # 包含核心模型交互模块
├── tests # 单元测试和示例脚本
│ ├── examples # 使用示例代码
│ └── llm_test.py # 对大模型进行调用的测试案例
├── env.example # 配置文件模板,需复制为.env并填写相应环境变量
├── gitignore # Git忽略文件列表
├── LICENSE # 许可证文件,遵循MIT协议
├── Makefile # 构建脚本
├── README.md # 项目说明文档
├── pyproject.toml # Python项目的元数据和工具配置
├── weichat.jpg # 可能是项目相关的图片或标识
└── 更多辅助文件和脚本...
sparkaisparkai
: 包含核心的SDK实现,用于与讯飞星火大模型交互。tests
: 提供了测试套件和示例代码,方便开发者了解如何使用这个SDK。env.example
: 用户应将其复制为.env
文件,并填充必要的APP_ID, API_KEY等信息。README.md
: 主要文档,提供了安装指引、新特性和如何使用的快速入门。
2. 项目的启动文件介绍
尽管此项目不提供传统意义上的“启动”文件(如单一的main.py),但主要入口点在于通过导入SDK库并在用户的Python脚本中实例化ChatSparkLLM
对象进行交互。例如,通过下面的方式开始使用SDK:
from sparkai.llm.llm import ChatSparkLLM
# 配置必要的环境变量或者直接在代码中指定
spark = ChatSparkLLM(
spark_api_url="配置项",
spark_app_id="配置项",
spark_api_key="配置项",
spark_api_secret="配置项",
spark_llm_domain="配置项"
)
# 调用大模型
response = spark.generate([...])
print(response)
开发者通常从导入相应的模块并初始化对象开始他们的工作。
3. 项目的配置文件介绍
环境变量配置 - .env
项目的核心配置通过.env
文件管理,开发者应将env.example
复制一份为.env
,并填充以下关键信息:
SPARKAI_URL
: 星火大模型的API地址。SPARKAI_APP_ID
: 讯飞分配的应用ID。SPARKAI_API_KEY
: 应用的API Key。SPARKAI_API_SECRET
: 对应的API Secret。SPARKAI_DOMAIN
: 特定的模型域配置,如果有需求的话。
此配置允许用户在不修改源代码的情况下个性化设置连接参数,保证敏感信息的安全。
以上就是对spark-ai-python
项目的快速概览,包括它的目录布局、如何启动使用以及配置细节。开发者应当参照提供的示例代码和文档来深入理解和应用这个SDK。
spark-ai-python 星火大模型 python sdk库 项目地址: https://gitcode.com/gh_mirrors/sp/spark-ai-python