探秘GLTR:大型语言模型测试室

探秘GLTR:大型语言模型测试室

项目地址:https://gitcode.com/gh_mirrors/de/detecting-fake-text

Overview

GLTR,全称为Giant Language Model Test Room,是一个用于检测由大型语言模型(如GPT-2)生成的文本的工具。这个项目由Hendrik Strobelt、Sebastian Gehrmann和Alexander M. Rush共同创建,旨在帮助我们识别那些可能由AI生成的文字,从而提高对信息真实性的判断力。

项目介绍

GLTR提供了一个直观的Web界面,让用户可以方便地检查输入文本是否有可能是通过像GPT-2这样的大模型生成的。它的工作原理基于概率统计,能够展示出文本中特定序列出现的概率分布,以揭示潜在的模式。此外,项目还包括一个可扩展的后端,允许开发者为其他语言模型添加支持。

项目技术分析

GLTR的核心在于其后台API,它定义了一系列接口供前端调用以进行文本检测。这些API继承自AbstractLanguageChecker,并实现了check_probabilitiespostprocess两个关键方法。你可以通过修改backend/api.py来为新的语言模型添加支持。前端部分则使用React构建,提供了直观易用的交互界面。

应用场景

这个工具在各种场景下都能发挥重要作用,包括:

  1. 新闻审查:对于新闻媒体而言,GLTR可以帮助鉴别自动或半自动生成的假新闻。
  2. 学术界:科研人员可以利用GLTR检测论文中可能由AI生成的部分,维护学术诚信。
  3. 教育领域:教师可以检测学生作业是否存在抄袭或使用AI辅助写作的情况。
  4. 在线社区:论坛和社交网络平台可以用它来监控自动化的内容生成行为。

项目特点

  1. 易于使用:只需一个简单的命令行启动服务器,就能立即访问在线Demo进行文本检测。
  2. 灵活性:不仅支持GPT-2,还能轻松扩展到BERT或其他语言模型。
  3. 可视化:清晰的图表显示了文本中每个单词的生成概率,使结果一目了然。
  4. 开源:遵循Apache 2许可,自由开放源代码,鼓励社区贡献与合作。

为了体验GLTR的强大功能,你可以直接访问http://gltr.io/dist/index.html 或者在本地运行服务。无论你是开发者还是普通用户,GLTR都将为你开启全新的文本分析之旅。

detecting-fake-text Giant Language Model Test Room 项目地址: https://gitcode.com/gh_mirrors/de/detecting-fake-text

基于springboot+vue前后端分离,学生心理咨询评估系统(源码+Mysql数据库+视频+论文+PPT+教程),高分项目,开箱即用(毕业设计)(课堂设计) 使用旧方法对学生心理咨询评估信息进行系统化管理已经不再让人们信赖了,把现在的网络信息技术运用在学生心理咨询评估信息的管理上面可以解决许多信息管理上面的难题,比如处理数据时间很长,数据存在错误不能及时纠正等问题。 这次开发的学生心理咨询评估系统有管理员和用户。管理员可以管理个人中心,用户管理,试题管理,试卷管理,考试管理等。用户参加考试。。经过前面自己查阅的网络知识,加上自己在学校课堂上学习的知识,决定开发系统选择B/S模式这种高效率的模式完成系统功能开发。这种模式让操作员基于浏览器的方式进行网站访问,采用的主流的Java语言这种面向对象的语言进行学生心理咨询评估系统程序的开发,后台采用Spring Boot框架,在数据库的选择上面,选择功能强大的MySQL数据库进行数据的存放操作。 学生心理咨询评估系统被人们投放于现在的生活中进行使用,该款管理类软件就可以让管理人员处理信息的时间介于十几秒之间。在这十几秒内就能完成信息的编辑等操作。有了这样的管理软件,学生心理咨询评估信息的管理就离无纸化办公的目标更贴近了。
道路坑洞与车牌人物多目标检测数据集 一、基础信息 数据集名称:道路坑洞与车牌人物多目标检测数据集 数据规模: - 训练集:3,900张道路场景图片 - 验证集:194张标注图片 - 测试集:72张评估图片 目标类别: - 行人(Human):道路场景中的行人目标 - 车牌(Licence):车辆牌照及编号信息 - 坑洞(Pothole):路面凹陷破损区域 - 复合目标(Potholes-carplate-and-people):同时包含坑洞/车牌/行人的复杂场景 技术规格: - 标注格式:YOLO格式标注框 - 数据格式:JPEG/PNG道路实拍图像 二、适用场景 自动驾驶感知系统开发: 支持车载摄像头实时检测道路坑洞、行人及车牌信息,提升自动驾驶系统的环境感知能力。 道路养护评估系统: 通过检测路面坑洞分布和严重程度,为市政道路维护提供量化评估依据。 交通监控解决方案: 适用于智能交通系统中异常路况检测、车牌识别与行人安全预警等多任务场景。 计算机视觉研究: 提供多目标联合检测的实战数据,支持目标检测、异常区域定位等算法研究。 三、核心优势 多目标协同检测: 覆盖道路场景四大关键目标类别,支持单帧图像中同时检测路面缺陷、车辆牌照和行人目标。 真实场景多样性: 包含不同光照条件、天气状况和道路类型的实际道路图像,确保模型泛化能力。 工业级兼容性: 原生YOLO格式标注可直接应用于YOLOv5/v7/v8等主流检测框架,降低数据转换成本。 专业数据标注: 所有标注框经过双重质量校验,确保目标定位精度和类别标注准确性,框体坐标误差小于2%。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

井队湛Heath

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值