推荐开源神器:轻松将LabelMe标注转化为COCO格式
labelme2coco项目地址:https://gitcode.com/gh_mirrors/la/labelme2coco
在计算机视觉领域,准确的图像注释是训练模型的关键步骤。其中,LabelMe 是一个深受广大开发者喜爱的图形化图像标注工具,支持多种类型的标注任务。然而,许多流行的检测框架如 Yolact/Solo、Detectron 和 MMDetection 等需要 COCO 格式的标注数据。为了帮助大家解决这个问题,我们向您推荐一款轻量级的 Python 包 —— labelme2coco
。
项目介绍
labelme2coco
是一个简单易用的工具,它能够方便地将 LabelMe 的标注数据转换为 COCO 对象检测格式。只需一行命令,即可完成转换过程,极大地提升了工作效率,让你的标注数据无缝对接各种基于 COCO 格式的深度学习模型。
项目技术分析
该库基于 Python 编写,依赖于 LabelMe 库,提供了清晰的接口和简单的 API。其主要功能包括:
- 转换函数:
convert()
可以直接处理一个包含 LabelMe 注解的目录,并生成对应的 COCO 格式 JSON 文件。 - 高级用法:通过导入内部函数
get_coco_from_labelme_folder()
和save_json()
,你可以更灵活地控制训练集和验证集的划分,并保存为两个独立的 COCO JSON 文件。
项目及技术应用场景
labelme2coco
在以下场景中非常实用:
- 快速构建训练数据集:当你使用 LabelMe 完成图像注释后,可以立即转换为 COCO 格式,用于训练对象检测或实例分割模型。
- 数据集管理:对于大型数据集,它可以轻松地按照指定比例划分训练集和验证集。
- 研究与实验:如果你正在尝试不同的模型,或者进行对比实验,这个工具能帮你节省大量数据预处理的时间。
项目特点
- 简洁高效:仅需几行代码就能完成标注数据的转换。
- 灵活性强:支持按比例自动划分训练集和验证集,便于数据集管理。
- 易于集成:可以直接与现有的 LabelMe 工作流结合,无缝对接各类基于 COCO 格式的深度学习框架。
安装也非常简单:
pip install -U labelme2coco
基本使用示例如下:
labelme2coco path/to/labelme/dir
想了解更多高级用法,请参考项目文档和 GitHub 页面。
总结起来,labelme2coco
是一个不可或缺的工具,如果你在做计算机视觉相关的项目并使用 LabelMe 进行标注,那么它一定能帮到你。赶紧试试看吧!
labelme2coco项目地址:https://gitcode.com/gh_mirrors/la/labelme2coco